ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

C++ Cookbook

By Jeft Cogswell, Christopher Diggins,
Ryan Stephens, Jonathan Turkanis
Publisher: O'Reilly

Pub Date: November 2005

ISBN: 0-596-00761-2

Pages: 592

Table of Contents | Index

Overview

MEXT B

Page 1

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Despite its highly adaptable and flexible nature, C++ is also one of the more complex programming
languages to learn. Once mastered, however, it can help you organize and process information with
amazing efficiency and quickness.

The C++ Cookbook will make your path to mastery much shorter. This practical, problem-solving
guide is ideal if you're an engineer, programmer, or researcher writing an application for one of the
legions of platforms on which C++ runs. The algorithms provided in C++ Cookbook will jump-start
your development by giving you some basic building blocks that you don't have to develop on your
own.

Less a tutorial than a problem-solver, the book addresses many of the most common problems you're
likely encounter--whether you've been programming in C++ for years or you're relatively new to the
language. Here are just some of the time-consuming tasks this book contains practical solutions for:

Reading the contents of a directory

e Creating a singleton class

Date and time parsing/arithmetic

o String and text manipulation

o Working with files

Parsing XML

e Using the standard containers

Typical of O'Reilly's "Cookbook" series, C++ Cookbook is written in a straightforward format,
featuring recipes that contain problem statements and code solutions, and apply not to hypothetical
situations, but those that you're likely to encounter. A detailed explanation then follows each recipe in
order to show you how and why the solution works. This question-solution-discussion format is a
proven teaching method, as any fan of the "Cookbook" series can attest to. This book will move
quickly to the top of your list of essential C++ references.

NEXT B

Page 2

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

Page 3

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

MEXT B

C++ Cookbook
By Jeff Cogswell, Christopher Diggins,
Ryan Stephens, Jonathan Turkanis

Publisher: O'Reilly

Pub Date: November 2005
ISBN: 0-596-00761-2
Pages: 592

Table of Contents | Index

Copyright
Preface
-About the Examples
‘Conventions Used in This Book
‘Using Code Examples
‘Comments and Questions
Safari Enabled
-Acknowledgments
~_Chapter 1. Building C++ Applications
Introduction to Building
Recipe 1.1. Obtaining and Installing GCC
Recipe 1.2. Building a Simple "Hello, World" Application from the Command Line
Recipe 1.3. Building a Static Library from the Command Line
Recipe 1.4. Building a Dynamic Library from the Command Line
Recipe 1.5. Building a Complex Application from the Command Line
Recipe 1.6. Installing Boost.Build
Recipe 1.7. Building a Simple "Hello, World" Application Using Boost.Build
Recipe 1.8. Building a Static Library Using Boost.Build
Recipe 1.9. Building a Dynamic Library Using Boost.Build
Recipe 1.10. Building a Complex application Using Boost.Build
Recipe 1.11. Building a Static Library with an IDE
Recipe 1.12. Building a Dynamic Library with an IDE
Recipe 1.13. Building a Complex Application with an IDE
Recipe 1.14. Obtaining GNU make
Recipe 1.15. Building A Simple "Hello, World" Application with GNU make
Recipe 1.16. Building a Static Library with GNU Make
Recipe 1.17. Building a Dynamic Library with GNU Make
Recipe 1.18. Building a Complex Application with GNU make
Recipe 1.19. Defining a Macro
Recipe 1.20. Specitying a Command-Line Option from Your IDE
Recipe 1.21. Producing a Debug Build
Recipe 1.22. Producing a Release Build
Recipe 1.23. Specifying a Runtime Library Variant
Recipe 1.24. Enforcing Strict Conformance to the C++ Standard
Recipe 1.25. Causing a Source File to Be Linked Automatically Against a Specified Library
Recipe 1.26. Using Exported Templates
_Chapter 2. Code Organization

Page 4

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Introduction

Recipe 2.1. Making Sure a Header File Gets Included Only Once

Recipe 2.2. Ensuring You Have Only One Instance of a Variable Across Multiple Source Files

Recipe 2.3. Reducing #includes with Forward Class Declarations

Recipe 2.4. Preventing Name Collisions with Namespaces

Recipe 2.5. Including an Inline File
—_Chapter 3. Numbers

Introduction

Recipe 3.1. Converting a String to a Numeric Type

Recipe 3.2. Converting Numbers to Strings

Recipe 3.3. Testing Whether a String Contains a Valid Number

Recipe 3.4. Comparing Floating-Point Numbers with Bounded Accuracy

Recipe 3.5. Parsing a String Containing a Number in Scientific Notation

Recipe 3.6. Converting Between Numeric Types

Recipe 3.7. Getting the Minimum and Maximum Values for a Numeric Type
_Chapter 4. Strings and Text

Introduction

Recipe 4.1. Padding a String

Recipe 4.2. Trimming a String

Recipe 4.3. Storing Strings in a Sequence

Recipe 4.4. Getting the Length of a String

Recipe 4.5. Reversing a String

Recipe 4.6. Splitting a String

Recipe 4.7. Tokenizing a String

Recipe 4.8. Joining a Sequence of Strings

Recipe 4.9. Finding Things in Strings

Recipe 4.10. Finding the nth Instance of a Substring

Recipe 4.11. Removing a Substring from a String

Recipe 4.12. Converting a String to Lower- or Uppercase

Recipe 4.13. Doing a Case-Insensitive String Comparison

Recipe 4.14. Doing a Case-Insensitive String Search

Recipe 4.15. Converting Between Tabs and Spaces in a Text File

Recipe 4.16. Wrapping Lines in a Text File

Recipe 4.17. Counting the Number of Characters, Words, and Lines in a Text File

Recipe 4.18. Counting Instances of Each Word in a Text File

Recipe 4.19. Add Margins to a Text File

Recipe 4.20. Justify a Text File

Recipe 4.21. Squeeze Whitespace to Single Spaces in a Text File

Recipe 4.22. Autocorrect Text as a Buffer Changes

Recipe 4.23. Reading a Comma-Separated Text File

Recipe 4.24. Using Regular Expressions to Split a String
_Chapter 5. Dates and Times

Introduction

Recipe 5.1. Obtaining the Current Date and Time

Recipe 5.2. Formatting a Date/Time as a String

Recipe 5.3. Performing Date and Time Arithmetic

Recipe 5.4. Converting Between Time Zones

Recipe 5.5. Determining a Day's Number Within a Given Year
Recipe 5.6. Defining Constrained Value Types

-_Chapter 6. Managing Data with Containers
Introduction

Page 5

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 6.1. Using vectors Instead of Arrays

Recipe 6.2. Using vectors Efficiently

Recipe 6.3. Copying a vector

Recipe 6.4. Storing Pointers in a vector

Recipe 6.5. Storing Objects in a list

‘Recipe 6.6. Mapping strings to Other Things

Recipe 6.7. Using Hashed Containers

Recipe 6.8. Storing Objects in Sorted Order

Recipe 6.9. Storing Containers in Containers
_Chapter 7. Algorithms

Introduction

Recipe 7.1. Iterating Through a Container

Recipe 7.2. Removing Objects from a Container

Recipe 7.3. Randomly Shuffling Data

Recipe 7.4. Comparing Ranges

Recipe 7.5. Merging Data

Recipe 7.6. Sorting a Range

Recipe 7.7. Partitioning a Range

Recipe 7.8. Performing Set Operations on Sequences

Recipe 7.9. Transforming Elements in a Sequence

Recipe 7.10. Writing Your Own Algorithm

Recipe 7.11. Printing a Range to a Stream
—_Chapter 8. Classes

Introduction

Recipe 8.1. Initializing Class Member Variables

Recipe 8.2. Using a Function to Create Objects (a.k.a. Factory Pattern)
Recipe 8.3. Using Constructors and Destructors to Manage Resources (or RAII)
Recipe 8.4. Automatically Adding New Class Instances to a Container
Recipe 8.5. Ensuring a Single Copy of a Member Variable

Recipe 8.6. Determining an Object's Type at Runtime

Recipe 8.7. Determining if One Object's Class Is a Subclass of Another
Recipe 8.8. Giving Each Instance of a Class a Unique Identifier

Recipe 8.9. Creating a Singleton Class

Recipe 8.10. Creating an Interface with an Abstract Base Class

Recipe 8.11. Writing a Class Template

Recipe 8.12. Writing a Member Function Template

Recipe 8.13. Overloading the Increment and Decrement Operators

Recipe 8.14. Overloading Arithmetic and Assignment Operators for Intuitive Class Behavior
Recipe 8.15. Calling a Superclass Virtual Function

_Chapter 9. Exceptions and Safety
Introduction

Recipe 9.1. Creating an Exception Class

Recipe 9.2. Making a Constructor Exception-Safe
Recipe 9.3. Making an Initializer List Exception-Safe
Recipe 9.4. Making Member Functions Exception-Safe

Recipe 9.5. Safely Copying an Object
—_Chapter 10. Streams and Files

Introduction

Recipe 10.1. Lining Up Text Output

Recipe 10.2. Formatting Floating-Point Output
Recipe 10.3. Writing Your Own Stream Manipulators

Page 6

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 10.4. Making a Class Writable to a Stream
Recipe 10.5. Making a Class Readable from a Stream
Recipe 10.6. Getting Information About a File

Recipe 10.7. Copying a File

Recipe 10.8. Deleting or Renaming a File

Recipe 10.9. Creating a Temporary Filename and File
Recipe 10.10. Creating a Directory

Recipe 10.11. Removing a Directory

Recipe 10.12. Reading the Contents of a Directory
Recipe 10.13. Extracting a File Extension from a String
Recipe 10.14. Extracting a Filename from a Full Path
Recipe 10.15. Extracting a Path from a Full Path and Filename
Recipe 10.16. Replacing a File Extension

Recipe 10.17. Combining Two Paths into a Single Path
_Chapter 11. Science and Mathematics

Introduction

Recipe 11.1. Computing the Number of Elements in a Container

Recipe 11.2. Finding the Greatest or Least Value in a Container

Recipe 11.3. Computing the Sum and Mean of Elements in a Container

Recipe 11.4. Filtering Values Outside a Given Range

Recipe 11.5. Computing Variance, Standard Deviation, and Other Statistical Functions

Recipe 11.6. Generating Random Numbers

Recipe 11.7. Initializing a Container with Random Numbers

Recipe 11.8. Representing a Dynamically Sized Numerical Vector

Recipe 11.9. Representing a Fixed-Size Numerical Vector

Recipe 11.10. Computing a Dot Product

Recipe 11.11. Computing the Norm of a Vector

Recipe 11.12. Computing the Distance Between Two Vectors

Recipe 11.13. Implementing a Stride Iterator

Recipe 11.14. Implementing a Dynamically Sized Matrix

Recipe 11.15. Implementing a Constant-Sized Matrix

Recipe 11.16. Multiplying Matricies

Recipe 11.17. Computing the Fast Fourier Transform

Recipe 11.18. Working with Polar Coordinates

Recipe 11.19. Performing Arithmetic on Bitsets

Recipe 11.20. Representing Large Fixed-Width Integers

Recipe 11.21. Implementing Fixed-Point Numbers
-_Chapter 12. Multithreading

Introduction

Recipe 12.1. Creating a Thread

Recipe 12.2. Making a Resource Thread-Safe

Recipe 12.3. Notifying One Thread from Another

Recipe 12.4. Initializing Shared Resources Once

Recipe 12.5. Passing an Argument to a Thread Function
-_Chapter 13. Internationalization

Introduction

Recipe 13.1. Hardcoding a Unicode String

Recipe 13.2. Writing and Reading Numbers

Recipe 13.3. Writing and Reading Dates and Times

Recipe 13.4. Writing and Reading Currency

Recipe 13.5. Sorting [ocalized Strings

Page 7

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Chapter 14. XML

Introduction

Recipe 14.1. Parsing a Simple XML Document

Recipe 14.2. Working with Xerces Strings

Recipe 14.3. Parsing a Complex XML Document

Recipe 14.4. Manipulating an XML Document

Recipe 14.5. Validating an XML Document with a DTD

Recipe 14.6. Validating an XML Document with a Schema

Recipe 14.7. Transforming an XML Document with XSL.T

Recipe 14.8. Evaluating an XPath Expression

Recipe 14.9. Using XML to Save and Restore a Collection of Objects
—_Chapter 15. Miscellaneous

Introduction

Recipe 15.1. Using Function Pointers for Callbacks

Recipe 15.2. Using Pointers to Class Members

Recipe 15.3. Ensuring That a Function Doesn't Modify an Argument

Recipe 15.4. Ensuring That a Member Function Doesn't Modify Its Object

Recipe 15.5. Writing an Operator That Isn't a Member Function
Recipe 15.6. Initializing a Sequence with Comma-Separated Values

‘Colophon
Index

e prcv NExT

Please register to remove this banner.

Page 8

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Copyright © 2006 O'Reilly Media, Inc. All rights reserved.
Printed in the United States of America.
Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http:/safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate(@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. The Cookbook series designations, C++ Cookbook, the image of a collie, and
related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

e prcy | NEXT B

Please register to remove this banner.

Page 9

http://safari.oreilly.com
mailto:corporate@oreilly.com
http://www.processtext.com/abcchm.html
http://safari.oreilly.com
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Preface

C++ runs on virtually every platform and in an infinite number of applications. If you bought or might buy
this book, you are probably an engineer or researcher writing one of these applications. But regardless of
what you are writing and what platform you are targeting, odds are that you will be re-solving many of
the same problems that other C++ programmers have been solving for years. What we have done in this
book is solve many of these common problems and explain each of the solutions.

Whether you have been programming in C++ for years or are relatively new to the language, you are
probably familiar with the things you have rewrite on each new project: Date and time parsing/arithmetic,
manipulating string and text, working with files, parsing XML, using the standard containers, and so on.
These are the kinds of problems this book contains solutions for. In some cases (e.g., date and time
arithmetic), the standard library contains very little support. In others (e.g., string manipulation) the
standard library contains functionally rich classes, but it can't do everything and some very common tasks
are cumbersome.

The format is straightforward. Each recipe has a problem statement and a code solution, and most have
a discussion that follows. We have tried to be pragmatic and solve the problems at hand without
digressing too far, but in many cases there are related topics that are so useful (or just cool) that we have
to provide a page or two of explanation.

This is a book about solving common problems with C++, but not a book about learning C++. We
assume that you have at least a basic knowledge of C++ and object-oriented programming. In particular,
it will be helpful if you have at least some familiarity with:

C++ inheritance and virtual functions

The standard library

Components of the Standard Template Library (containers, iterators, and algorithms)

e Templates

These are not strict prerequisites for reading this book, but having at least a basic knowledge of them
will help.

e prey NEXT

Page 10

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

Page 11

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

About the Examples

In crafting our code examples, we strove for simplicity, portability, and performance. The design for
each solution followed a similar path: use standard C++ (language or library) if possible; if not, use a de
facto standard as the replacement. For example, many of the recipes that deal with strings use the
standard string class, and most of the mathematical and scientific recipes use standard numeric types,
containers, and templates. The standard library has strong support for these areas, so standard facilities
are a perfect fit. By comparison, however, C++ has little or no standardized support for multithreading or
XML parsing. Thus, we used the multithreading support provided in the Boost Threads library and the
XML parsing functionality provided by the Xerces parser.

Often, there are many ways to do the same thing in C++, which gives developers flexibility, but also
invites some controversy. Most of the examples illustrate the best general solution we could come up
with, but that doesn't mean that it's the best solution ever. If there are alternative solutions that are better
in some ways and not as good in others (maybe the solution that uses the standard library is awkward or
unintuitive; in this case, we may provide an alternative that uses Boost), we present the alternative
anyway to give you some insight into the various solutions that are available.

Lots of the examples use templates. If you don't have much experience writing templates, you should get
some soon. There is very little introductory material on templates in this book, except for two recipes in
Chapter 8: Recipe 8.11 and Recipe 8.12. Most of the interesting developments in C++ are in the areas
of template metaprogramming and policy-based design.

At the time of this writing, there is a lot of movement in the C++ community. The first technical report
(called TR1) is more or less stable. It is a standardized list of features that will be eventually added to the
next version of the C++ standard. It is not required that standard library implementations support it, but
many vendors have already begun implementing TR1 and you can expect to see it appearing in shipped
compilers soon. Many of the libraries in TR1 first appeared in the Boost project.

We use libraries from Boost a lot. Boost is a set of open source, peer-reviewed, portable libraries that
fill in many of the gaps in the standard library. The current version as of this writing is 1.32, and 1.33
should be out any time now. We provide many pointers to specific Boost libraries in the examples. For
more information on Boost in general, check out the project web site at www.boost.org.

e prcy EXT

ABC Amber CHM Converter Trial version

http:/ fwwrw.processtext.com/abcchnm.html

Page 12

http://www.boost.org
http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLSs, email addresses, filenames, file extensions, pathnames, directories, Unix
utilities, commands, and command-line parameters.

<..>

Angle-brackets surround elements that you need to specify in commands and command-line parameters
when those elements appear inline, in italics.

Constant width

Indicates code or fragments thereof. For example, class names, method names, and the like are
rendered in constant width whenever they appear in the text.

Constant width bold

Shows user-input in mixed, input/output examples.

Constant width italic

Indicates user-specified items in syntax examples.

20 -
._f‘:' -I=
=
..:.f._.

Indicates a tip, suggestion, or general note.

'5 Indicates a warning or caution.

e prcy EXT

Page 13

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

Page 14

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Using Code Examples

This book is designed to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact us for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several chunks of
code from this book does not require permission. Selling or distributing a CD-ROM of examples from
O'Reilly books does require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code from this book
into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher,
and ISBN. For example: "C++ Cookbook by D. Ryan Stephens, Christopher Diggins, Jonathan
Turkanis, and Jeff Cogswell. Copyright 2006 O'Reilly Media, Inc., 0-596-00761-2."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to

contact us at permissions@oreilly.com.
@ prev

Please register to remove this banner.

Page 15

mailto:permissions@oreilly.com
http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

@ prev | NEXT

Comments and Questions

Please address comments and questions concerning this book to the publisher:
O'Reilly Media, Inc.1005 Gravenstein Highway NorthSebastopol, CA 95472(800) 998-9938 (in the
United States or Canada)(707) 829-0515 (international or local)(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You
can access this page at:

http://www.oreilly.com/catalog/cplusplusckbk

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see
our web site at:

http://www.oreilly.com
=2

Please register to remove this banner.

Page 16

http://www.oreilly.com/catalog/cplusplusckbk
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://www.processtext.com/abcchm.html
http://www.oreilly.com/catalog/cplusplusckbk
http://www.oreilly.com
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

=1 NExT

Safari Enabled

BOOKE ONLINE
SULLLSUEE When you see a Safari® Enabled icon on the cover of your favorite technology book,

that means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick answers
when you need the most accurate, current information. Try it for free at http:/safari.oreilly.com.

k=1 wExT

Please register to remove this banner.

Page 17

http://safari.oreilly.com
http://www.processtext.com/abcchm.html
http://safari.oreilly.com
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 18

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Acknowledgments

From D. Ryan Stephens

The most important people I have to thank are my wife, Daphne, and my children, Jesse, Pascal, and
Chloe. Writing a book is hard work, but above all it is time-consuming work, and my family has been
supportive and has tolerated my late nights in the office in the best possible way.

I also have to thank the technical reviewers, who made this book better than it otherwise would have
been. As with so many things, it is always helpful to have a second, third, and fourth set of eyes look over
something for clarity and correctness. Many thanks to Dan Saks, Uwe Schnitker, and David Theese.

Finally, I have to thank my editor, Jonathan Gennick, for his advice, which was mostly grammatical,
frequently stylistic, occasionally psychologically supportive, and always good.

From Christopher Diggins

I wish to thank Kris Unger, Jonathan Turkanis, Jonathan Gennick, and Ryan Stephens for their helpful
suggestions and critiques, and making me a better writer for it. A very special thanks to my wife Mélanie
Charbonneau for brightening my life.

From Jonathan Turkanis

Because my chapters touched on so many different commerical products and open source projectsand
because I had so many questions about each of themlI have an unusually large number of people to thank.

Let me first thank Ron Liechty, Howard Hinnant, and the engineers at Metrowerks for answering every
conceivable question and for providing me with several versions of CodeWarrior.

I'd also like to thank the Boost.Build developers, especially Vladimir Prus, Rene Rivera, and David
Abrahams, not just for answering my questions but also for putting together the Boost build system,
which was the single most important source of information for Chapter 1.

Thanks also to Walter Bright at Digital Mars; Greg Comeau at Comeau Computing; P. J. Plauger at
Dinkumware; Colin Laplace at Bloodshed Software; Ed Mulroy and Pavel Vozenilek at the
borland.public.* newsgroups; Arnaud Debaene and Igor Tandetnik at microsoft.public.vc.languages;
Earnie Boyd, Greg Chicares, Adib Taraben, John Vandenberg, and Lennart Borgman at the
MinGW/MSY'S mailing list; Christopher Faylor, Larry Hall, Igor Pechtchanski, Joshua Daniel Franklin,
and Dave Korn at the Cygwin list; Mike Stump and Geoffrey Keating at the GCC developers list; Mark
Goodhand at DecisionSoft; and David N. Bertoni at apache.org.

I'm also indebted to Robert Mecklenburg, whose book Managing Projects with GNU make, Third
Edition (O'Reilly) provided the foundation for my treatment of GNU make.

In addition, Vladimir Prus, Matthew Wilson, Ryan Stephens, and Christopher Diggins provided detailed
criticism of early drafts of the manuscript.

Finally, I must thank my editor, Jonathan Gennick, my wife, Jennifer, and my Grandfather, Louis S.
Goodman, who taught me how to write.

Page 19

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 20

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 21

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Chapter 1. Building C++ Applications

Introduction to Building

Recipe 1.1. Obtaining and Installing GCC

Recipe 1.2. Building a Simple "Hello, World" Application from the Command Line
Recipe 1.3. Building a Static Library from the Command Line

Recipe 1.4. Building a Dynamic Library from the Command Line

Recipe 1.5. Building a Complex Application from the Command Line
Recipe 1.6. Installing Boost.Build

Recipe 1.7. Building a Simple "Hello, World" Application Using Boost.Build
Recipe 1.8. Building a Static Library Using Boost.Build

Recipe 1.9. Building a Dynamic Library Using Boost.Build

Recipe 1.10. Building a Complex application Using Boost.Build

Recipe 1.11. Building a Static Library with an IDE

Recipe 1.12. Building a Dynamic Library with an IDE

Recipe 1.13. Building a Complex Application with an IDE

Recipe 1.14. Obtaining GNU make

Recipe 1.15. Building A Simple "Hello, World" Application with GNU make
Recipe 1.16. Building a Static Library with GNU Make

Recipe 1.17. Building a Dynamic Library with GNU Make

Recipe 1.18. Building a Complex Application with GNU make

Recipe 1.19. Defining a Macro

Recipe 1.20. Specifying a Command-Line Option from Your IDE

Recipe 1.21. Producing a Debug Build

Recipe 1.22. Producing a Release Build
Recipe 1.23. Specifying a Runtime Library Variant

Recipe 1.24. Enforcing Strict Conformance to the C++ Standard

Recipe 1.25. Causing a Source File to Be Linked Automatically Against a Specified Library

Page 22

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 23

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 24

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Introduction to Building

This chapter contains recipes for transforming C++ source code into executable programs and libraries.
By working through these recipes, you'll learn about the basic tools used to build C++ applications, the
various types of binary files involved in the build process, and the systems that have been developed to
make building C++ applications manageable.

If you look at the titles of the recipes in this chapter, you might get the impression that I solve the same
problems over and over again. You'd be right. That's because there are many ways to build C++
applications, and while I can't cover them all, I try to cover some of the most important methods. In the
first dozen or so recipes, I show how to accomplish three fundamental tasksbuilding static libraries,
building dynamic libraries, and building executablesusing a variety of methods. The recipes are grouped
by method: first, I look at building from the command line, then with the Boost build system
(Boost.Build), and then with an Integrated Development Environment (IDE), and finally with GNU make

Before you start reading recipes, be sure to read the following introductory sections. I'll explain some
basic terminology, provide an overview of the command-line tools, build systems and IDEs covered in
the chapter, and introduce the source code examples.

a Even if you'll be using a build system or IDE, you should start by reading the

wh ..

g% recipes on building from the command line: these recipes introduce some
essential concepts that you'll need to understand later in this chapter.

Basic Terminology

The three basic tools used to build C++ applications are the compiler, the linker, and the archiver (or
librarian). A collection of these programs and possibly other tools is called a toolset.

The compiler takes C++ source files as input and produces object files , which contain a mixture of
machine-executable code and symbolic references to functions and data. The archiver takes a collection
of object files as input and produces a static library, or archive, which is simply a collection of object
files grouped for convenient use. The linker takes a collection of object files and libraries and resolves
their symbolic references to produce either an executable or dynamic library . Roughly speaking, the
linker operates by matching each use of a symbol to its definition. When an executable or dynamic library
is created, it is said to be /inked, the libraries used to build the executable or dynamic library are said to
be linked against.

An executable, or application, is simply any program that can be executed by the operating system. A
dynamic library, also called a shared library, is like an executable except that it can't be run on its own;
it consists of a body of machine-executable code that is loaded into memory after an application is
started and can be shared by one or more applications. On Windows, dynamic libraries are also called
dynamic link libraries (DLLs).

The object files and static libraries on which an executable depends are needed only when the
executable is built. The dynamic libraries on which an executable depends, however, must be present on
a user's system when the executable is run.

Table 1-1 shows the file extensions typically associated with these four basic types of files on Microsoft
Windows and Unix. When I mention a file that has a different extension on Windows and Unix, I'll
sometimes omit the extension if it's clear from the context.

Page 25

http://www.microsoft.com
http://www.intel.com
http://www.intel.com
http://www.comeaucomputing.com
http://www.digitalmars.com
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 26

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 27

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 1.1. Obtaining and Installing GCC

Problem

You wish to obtain GCC, the free GNU C/C++ compiler.

Solution

The solution depends on your operating system.
Windows

Install MinGW, Cygwin, or both.

To install MinGW, go to the MinGW homepage, www.mingw.org, and follow the link to the MinGW
download page. Download the latest version of the MinGW installation program, which should be
named MinGW-<version>.exe.

Next, run the installation program. It will ask you to specify where you want to install MinGW. It may
also ask you which packages you wish to install; at a minimum, you must install gcc-core, gcc-g++,
binutils, and the MinGW runtime, but you may wish to install more. When the installation is complete,
you will be able to run gcc, g++, ar, ranlib, dlitool, and several other GNU tools from the Windows
command line. You may wish to add the bin subdirectory of your MinGW installation to your PATH
environment variable so that you can specify these tools on the command line by their simple names
rather than by their full pathnames.

To install Cygwin, go to the Cygwin homepage, www.cygwin.com, and follow the link InstallCygwin
Now to download the Cygwin installation program. Next, run the installation program. It will ask you to
make a series of choices, such as where Cygwin should be installed.

I'm explaining the Cygwin installation process in detail because it can be a bit
6% complicated, depending on what you want to install. The process may have
changed by the time you read this, but if it has, it will probably have been made
easier.

The most important choice you must make is the selection of packages. If you have enough disk space
and a high-speed Internet connection, I recommend that you install all of the packages. To do this, click
once on the word Default next to the word All at the top of the hierarchical display of packages. After a
possibly long pause, the word Default should change to Install.

If you are short on disk space, or if you have a slow Internet connection, you can choose a smaller
selection of packages. To select just the development tools, click once on the word Default next to the
word Devel. After a possibly long pause, the word Default should change to Install. For an even smaller
collection of packages, expand the list of development packages by clicking on the + icon next to the
word Devel. Select the packages gcc-core, gcc-g++, and make by clicking on the word Skip, opposite
each package, causing Skip to change to Install.

When you are done selecting packages, press Finish. When the installation program completes, the
Cygwin installation directory should contain a file named cygwin.bat . Running this script will display the

Cygwin shell, a command-line environment from which you can run gce, g++, ar, ranlib, dlltool, make,
and anv other 1111litiec vor1 choce to 1netall The inctallation nrocece addec the Ain aitbhdirectorv of the

Page 28

http://www.mingw.org
http://www.cygwin.com
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 29

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 30

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 1.2. Building a Simple "Hello, World" Application
from the Command Line

Problem
You want to build a simple "Hello, World" program, such as that in Example 1-4.

Example 1-4. A simple "Hello, World" program
hello.cpp

#include <iostream>

int main()
{

std::cout << "Hello, World!\n";
}

Solution

Follow these steps:
1.

1. Set any environment variables required by your toolset.

2. Enter a command telling your compiler to compile and link your program.

Scripts for setting environment variables are listed in Table 1-5; these scripts are located in the same

directory as your command-line tools (Table 1-3). If your toolset does not appear in Table 1-5, you can

skip the first step. Otherwise, run the appropriate script from the command line, if you are using
Windows, or source the script, if you are using Unix.

Table 1-5. Scripts for setting environment variables required by your command-line tools

Toolset Script

Visual C++ vevars32.bat

Intel (Windows) iclvars.bat[2]

Intel (Linux) iccvars.sh or iccvars.csh
Metrowerks (Mac OS X) mwvars.sh or mwvars.csh[3]
Metrowerks (Windows) cwenv.bat

Comeau Same as the backend toolset

[2] With earlier version of the Intel compiler, this script was named iccvars.bat.

Page 31

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 32

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 33

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 1.3. Building a Static Library from the Command
Line
Problem

You wish to use your command-line tools to build a static library from a collection of C++ source files,
such as those listed in Example 1-1.

Solution

First, use your compiler to compile the source files into object files. If your source files include headers
located in other directories, you may need to use the -/ option to instruct your compiler where to search
for headers; for more information, see Recipe 1.5. Second, use your archiver to combine the object files
into a static library.

To compile each of the three source files from Example 1-1, use the command lines listed in Table 1-8,
modifying the names of the input and output files as needed. To combine the resulting object files into a

static library, use the commands listed in Table 1-10.

Table 1-10. Commands for creating the archive libjohnpaul.lib or libjohnpaul.a

Toolset Command line

ar ru libjohnpaul.a john.o paul.o
Jjohnpaul.oranlib libjohnpaul.a

GCC (Unix)Intel (Linux)Comeau (Unix)
GCC (Windows) ar ru libjohnpaul.a john.o paul.o johnpaul.o

lib -nologo -out:libjohnpaul lib john.obj

Visual C++Comeau (with Visual C++) paul.obj johnpaul.obj

xilib -nologo /out:libjohnpaul lib john.obj

Intel (Windows) paul.obj johnpaul.obj

Metrowerks (Windows) mwld -h.b'rary -0 llbjo.hnpaul. lib john.obj
paul.obj johnpaul.obj

Metrowerks (Mac OS X) mwld -library -o libjohnpaul.a john.o paul.o
johnpaul.o

Borland tli‘b libjohnpaul.lib /u /a /C +john +paul
+johnpaul

Digital Mars lib -¢ -n libjohnpaul lib john.obj paul.obj

johnpaul.obj

For example, to compile john.cpp, paul.cpp, and johnpaul.cpp into object files using GCC, change to

Page 34

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 35

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 36

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 1.4. Building a Dynamic Library from the Command
Line

Problem

You wish to use your command-line tools to build a dynamic library from a collection of C++ source
files, such as those listed in Example 1-2.

Solution

Follow these steps:

1.

1. Use your compiler to compile the source files into object files. If you're using Windows, use the
-D option to define any macros necessary to ensure that your dynamic library's symbols will be
exported. For example, to build the dynamic library in Example 1-2, you need to define the
macro GEORGERINGO_DLL. If you're building a third-party library, the installation instructions
should tell you what macros to define.

2. Use your linker to create a dynamic library from the object files created in step 1.

If your dynamic library depends on other libraries, you'll need to tell the

6% compiler where to search for the library headers, and to tell the linker the names
of the other libraries and where to find them. This is discussed in detail in Recipe
LS.

The basic commands for performing the first step are given Table 1-8; you'll need to modify the names
of the input and output files appropriately. The commands for performing the second step are given in
Table 1-11. If you're using a toolset that comes with static and dynamic variants of its runtime libraries,
direct the compiler and linker to use a dynamically linked runtime, as described in Recipe 1.23.

Table 1-11. Commands for creating the dynamic library libgeorgeringo.so, libgeorgeringo.dll, or
libgeorgeringo.dylib

Toolset Command line

GCC g++ -shared -fPIC -o libgeorgeringo.so
george.o ringo.o georgeringo.o

GCC (Mac OS X) g++ -dynamiclib -fPIC -o libgeorgeringo.dylib
george.o ringo.o georgeringo.o

g++ -shared -o libgeorgeringo.dll
-Wlout-implib,libgeorgeringo.dll.a-W1,export-
all-symbols -Wl,enable-auto-image-base
george.o ringo.o georgeringo.o

GCC (Cygwin)

Page 37

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 38

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 39

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 1.5. Building a Complex Application from the
Command Line

Problem

You wish to use your command-line tools to build an executable that depends on several static and
dynamic libraries.

Solution
Start by building the static and dynamic libraries on which your application depends. Follow the

instructions distributed with the libraries, if they are from a third party; otherwise, build them as described
in Recipe 1.3 and Recipe 1.4.

Next, compile your application's .cpp files into object files as described in "Building a Simple "Hello,
World" Program from the Command Line. You may need to use the -/ option to tell your compiler where
to search for the headers needed by your application, as shown in Table 1-12.

Table 1-12. Specifying directories to search for headers

Toolset Option

All -I<directory>

Finally, use your linker to produce an executable from the collection of object files and libraries. For
each library, you must either provide a full pathname or tell the linker where to search for it.

At each stage of this process, if you are using a toolset which comes with static and dynamic variants of
its runtime libraries, and if your program uses at least one dynamic library, you should direct the compiler
or linker to use a dynamically linked runtime library, as described in Recipe 1.23.

Table 1-13 presents commands for linking the application sellobeatles from Example 1-3. It assumes
that:

The current directory is hellobeatles.

e The static library libjohnpaul.lib or libjohnpaul.a was created in the directory johnpaul.

e The dynamic library georgeringo.dll, georgeringo.so, or georgeringo.dylib and its import
library, if any, were created in the directory georgeringo.

-2 Since Comeau can't build dynamic libraries, as mentioned in Recipe 1.4, the

~4¥ entry for Comeau in Table 1-13 assumes that libgeorgeringo has been built as a
static library rather than as a dynamic library. To build libgeorgeringo as a static
library, remove the modifier GEORGERINGO DECL from the declaration of

the function georgeringo() in Example 1-2.

Page 40

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 41

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 42

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 1.6. Installing Boost.Build
Problem
You want to obtain and install Boost.Build.

Solution

Consult the Boost.Build documentation at www.boost.org/boost-build2 or follow these steps:
1.

1. Go to the Boost homepage, www.boost.org, and follow the Download link to Boost's
SourceForge download area.
2.

2. Download and unpack either the latest release of the package boost or the latest release of the
package boost-build. The former includes the full collection of Boost libraries, while the latter is
a standalone release of Boost.Build. Place the unpacked files in a suitable permanent location.

3. Download and unpack the latest version of the package boost-jam for your platform; this
package includes a prebuilt bjam executable. If the package boost-jam is not available for your
platform, follow the instructions provided with the package you downloaded in step 2 to build the
executable from the source.

Copy bjam to a location in your PATH environment variable.

o &

5. Permanently set the environment variable BOOST BUILD PATH to the Boost. Build root
directory. If you downloaded the package boost in step 1, the root directory is the subdirectory
tools/build/v2 of your Boost installation; otherwise, it is the directory boost-build.

6. Configure Boost.Build for your toolsets and libraries by editing the configuration file
user-config.jam, located in the Boost.Build root directory. The file user-config.jam contains
comments explaining how to do this.

Discussion

The most difficult part of using Boost.Build is downloading and installing it. Eventually Boost may
provide a graphical installation utility, but for the time being, you must follow the above steps.

The purpose of step five is to help the build tool, bjam, find the root directory of the build system. This
step is not strictly necessary, however, since there is another way to accomplish the same thing: simply

create a file called boost-build.jam, with the single line:
boost-build boost-build-root ;

and place it in the root directory of your project or in any of its parent directories. The second method
may be preferable if you wish to distribute Boost.Build with your source code, since it makes the
installation process easier for end users.

The sixth step is potentially the most complex, but in practice it is usually simple. If you have just a single Page 43

o111 PR T o141 1 . 1 11

http://www.boost.org/boost-build2
http://www.boost.org
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 44

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 45

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 1.7. Building a Simple "Hello, World" Application
Using Boost.Build

Problem

You want to use Boost.Build to build a simple "Hello, World" program, such as the one in Example 1-4.

Solution

Create a text file named Jamroot in the directory where you wish the executable and any accompanying
itermediate files to be created. In the file Jamroot, invoke two rules, as follows. First, invoke the exe
rule to declare an executable target, specifying your .cpp file as a source. Next, invoke the install rule,
specifying the executable target name and the location where you want the install directory. Finally, run
bjam to build your program.

For example, to build an executable Aello or hello.exe from the file hello.cpp in Example 1-1, create a
file named Jamroot with the following content in the directory containing sello.cpp, as shown in Example
1-8.

Example 1-8. Jamfile for project hello
jamfile for project hello

exe hello : hello.cpp ;

install dist : hello : <location>. ;

Next, change to the directory containing /ello.cpp and Jamroot and enter the following command:
> bjam hello

This command builds the executable /ello or hello.exe in a subdirectory of the current directory. Finally,

enter the command:
> bjam dist

This command copies the executable to the directory specified by the location property, which in this
case is the current directory.

s As this book goes to press, the Boost.Build developers are preparing for the

9 official release of Boost.Build version 2. By the time you read this, Version 2
will probably already have been released; if not, you can enable the behavior
described in this chapter by passing the command-line option v2 to bjam. For
example, instead of entering bjam hello, enter bjam --v2 hello.

Discussion

The file Jamroot is an example of a Jamfile. While a small collection of C++ source files might be
managed using a single Jamfile, a large codebase will typically require many Jamfiles, organized
hierarchically. Each Jamfile resides in a separate directory and corresponds to a separate project. Most
Jamfiles are simply named Jamfile, but the highest-level Jamfilethe Jamfile that resides in a directory that
is an ancestor of the directories containing all the other Jamfilesis named Jamroot. The project defined
by this highest-level Jamfile is known as the project root. Each project except the project root has a

o . . Page 46
parent project , defined as the project in the nearest ancestor directory containing a Jamfile. e

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 47

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 48

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 1.8. Building a Static Library Using Boost.Build
Problem

You want to use Boost.Build to build a static library from a collection of C++ source files, such as those
listed in Example 1-1.

Solution

Create a Jamroot file in the directory where you wish the static library to be created. In the file Jamroot
, invoke the lib rule to declare a library target, specifying your .cpp files as sources and the property
<link>static as a requirement. Add a usage requirement of the form <include>path to specify the library's
include directory, i.e., the directory with respect to which include directives for library headers should be
resolved. You may need to add one or more requirements of the form <include>path to tell the compiler
where to search for included headers. Finally, run bjam from the directory containing Jamroot, as
described in Recipe 1.7.

For example, to build a static library from the source files listed in Example 1-1, your Jamroot might
look like Example 1-11.

Example 1-11. A Jamfile to build the static library libjohnpaul.lib or libjohnpaul.a
Jamfile for project libjohnpaul

lib libjohnpaul

: # sources
john.cpp paul.cpp johnpaul.cpp

: # requirements
<link>static

: # default-build

: # usage-requirements
<include>..

I

To build the library, enter:
> bjam libjohnpaul

Discussion

The lib rule is used to declare a target representing a static or dynamic library. It takes the same form as
the exe rule, as illustrated in Example 1-9. The usage requirement <include>.. frees projects that depend
on your library from having to explicitly specify your library's include directory in their requirements. The
requirement <link>static specifies that your target should always be built as a static library. If you want
the freedom to build a library target either as static or as dynamic, you can omit the requirement
<link>static. Whether the library is built as static or dynamic can then be specified on the command line,
or in the requirements of a target that depends on the library target. For example, if the requirement
<link>static were omitted in Example 1-11, you could build the target libjohnpaul as a static library by

entering the command:
> bjam libjohnpaul link=static

Writing source code for a library that can be built either as static or dynamic is a bit tricky, however, as
discussed in Recipe 1.9.

See Also

. . . Page 49
Recipe 1.3, Recipe 1.11, and Recipe 1.16

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 50

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 51

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 1.9. Building a Dynamic Library Using Boost.Build
Problem

You wish to use Boost.Build to build a dynamic library from a collection of C++ source files, such as
those listed in Example 1-2.

Solution

Create a Jamroot file in the directory where you wish the dynamic libraryand the import library, if anyto
be created. In the file Jamroot, invoke the lib rule to declare a library target, specifying your .cpp files as
sources and the properties <link>shared as a requirement. Add a usage requirement of the form
<include>path to specify the library's include directory, i.e., the directory with respect to which include
directives for library headers should be resolved. If your source files include headers from other libraries,
you may need to add several requirements of the form <include>path to tell the compiler where to
search for included headers. You may also need to add one or more requirements of the form <define>
symbol to ensure that your dynamic library's symbols will be exported using __declspec(dllexport) on
Windows. Finally, run bjam from the directory containing Jamroot, as described in Recipe 1.7.

For example, to build a dynamic library from the source files listed in Example 1-2, create a file named
Jamroot in the directory georgeringo, as shown in Example 1-12.

Example 1-12. A Jamfile to build the dynamic library georgeringo.so, georgeringo.dll, or
georgeringo.dylib

Jamfile for project georgringo

lib libgeorgeringo
: # sources
george.cpp ringo.cpp georgeringo.cpp
: # requirements
<link>shared
<de fine>GEORGERINGO_DLL
: # default-build
: # usage-requirements
<include>..

’

To build the library, enter:

> bjam libgeorgeringo
Discussion

As discussed in Recipe 1.8, the lib rule is used to declare a target representing a static or dynamic
library. The usage requirement <include>.. frees projects which depend on your library from having to
explicitly specify your library's include directory in their requirements. The requirement <link>shared
specifies that the target should always be built as a dynamic library. If you want the freedom to build a
library target either as static or as dynamic, you can omit the requirement <link>shared and specify this
property on the command line, or in the requirements of a target that depends on the library target.
Writing a library which can be built as either static or dynamic requires some care, however, because of
the preprocessor directives necessary to ensure that symbols are properly exported on Windows.
Rewriting Example 1-2 so that it can be built as either static or dynamic makes a good exercise.

See Also

Recipe 1.4, Recipe 1.12, Recipe 1.16, and Recipe 1.19

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 53

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 54

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 1.10. Building a Complex application Using
Boost.Build

Problem

You wish to use Boost.Build to build an executable that depends on several static and dynamic libraries.

Solution

Follow these steps:
1.

1.

wn

5.

For each library on which the executable dependsunless it is distributed as a prebuilt
binarycreate a Jamfile as described in Recipe 1.8 and Recipe 1.9.

Create a Jamroot file in the directory where you want the executable to be created.

In the file Jamroot, invoke the exe rule to declare an executable target. Specify your .cpp files
and the library targets on which the executable depends as sources. Also, add properties of the
form <include>path as sources, if necessary, to tell the compiler where to search for library
headers.

In the file Jamroot, mvoke the install rule, specifying the properties <install-dependencies>on,
<install-type>EXE, and <install-type>SHARED _LIB as requirements.

Run bjam from the directory containing Jamroot as described in Recipe 1.7.

For example, to build an executable from the source files listed in Example 1-3, create a file named
Jamroot in the directory hellobeatles as shown in Example 1-13.

Example 1-13. A Jamfile to build the executable hellobeatles.exe or hellobeatles
Jamfile for project hellobeatles

exe hellobeatles
: # sources

’

../johnpaul//libjohnpaul
../georgeringo//libgeorgeringo
hellobeatles.cpp

install dist
: # sources

hellobeatles

: # requirements

’

<install-dependencies>on
<install-type>EXE
<install-type>SHARED LIB
<location>.

Now enter:
> bjam hellobeatles

Page 55

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 56

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 57

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 1.11. Building a Static Library with an IDE

Problem

You wish to use your IDE to build a static library from a collection of C++ source files, such as those
listed in Example 1-1.

Solution

The basic outline is as follows:

1.

1.

wn

(o2}

Create a new project and specify that you wish to build a static library rather than an executable
or a dynamic library.

Choose a build configuration (e.g., debug versus release, single-threaded versus multithreaded).

Specify the name of your library and the directory in which it should be created.

Add your source files to the project.

If necessary, specify one or more directories where the compiler should search for included
headers. See Recipe 1.13.

. Build the project.

The steps in this outline vary somewhat depending on the IDE; for example, with some IDEs, several
steps are combined into one or the ordering of the steps is different. The second step is covered in detail
inRecipe 1.21, Recipe 1.22, and Recipe 1.23. For now, you should use default settings as much as

possible.

For example, here's how to build a static library from the source code in Example 1-1 using the Visual
C++1IDE.

Select New==+ Project from the File menu, select Visual C++[9] in the left pane, select Win32 Console
Application, and enter /ibjohnpaul as your project's name. From the Win32 Application Wizard go to
Application Settings, select Static library, uncheck Precompiled header, and press Finish. You should
now have an empty project with two build configurations, Debug and Release, the former being the
active configuration.

[9] In versions of Visual C++ prior to Visual C++ 2005, this option was labeled Visual C++ Projects.

Next, display your project's property pages by right-clicking on the project's name in the Solution
Explorer and selecting Properties. Go to Configuration Properties==3 Librarian=> General and enter
the pathname of your project's output file in the field labeled Output File. The directory portion of the
pathname should point to the directory binaries which you created at the beginning of this chapter; the
file name portion should be libjohnpaul.lib.

™ 1

Page 58

Y Uk D B o T o T o Y B IV T o D B B T D e

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 59

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 60

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 1.12. Building a Dynamic Library with an IDE
Problem

You wish to use your IDE to build a dynamic library from a collection of C++ source files, such as those
listed in Example 1-2.

Solution

The basic outline is as follows:

1.

1. Create a new project and specify that you wish to build a dynamic library rather than static
library or an executable.

2.

2. Choose a build configuration (e.g., debug versus release, single-threaded versus multithreaded).

3.

3. Specify the name of your library and the directory where it should be created.
4. Add your source files to the project.
5

5. On Windows, define any macros necessary to ensure that your dynamic library's symbols will be
exported using __declspec(dllexport).

6. Ifnecessary, specify one or more directories where the compiler should search for included
headers. See Recipe 1.13.

\I

. Build the project.

As with Recipe 1.11, the steps in this outline vary somewhat depending on the IDE. The second step is
covered in detail in Recipe 1.21, Recipe 1.22, and Recipe 1.23. For now, you should use default settings
wherever possible.

For example, here's how to build a dynamic library from the source code in Example 1-2 using the
Visual C++ IDE.

Select New==> Project from the File menu, select Visual C++[10] in the left pane, select Win32
Console Application and enter /ibgeorgeringo as your project's name. From the Win32 Application
Wizard go to Application Settings, select DLL and Empty Project, and press Finish. You should now
have an empty project with two build configurations, Debug and Release, the former being the active
configuration.

[10] In versions of Visual C++ prior to Visual C++ 2005, this option was labeled Visual C++ Projects.

Next, display your project's property pages by right-clicking on the project's name in the Solution
Explorer and selecting Properties. Go to Configuration Properties=—3 Linker—3 General and enter the
pathname of your pl‘O] ject's output file in the ﬁeld labeled Output File. The d1rectory portlon of the

1 1T 11T 4441 41 e 1. 1 41 42 1T e~ 1T 1 4 41 (M

Page 61

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 62

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 63

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 1.13. Building a Complex Application with an IDE
Problem

You wish to use your IDE to build an executable that depends on several static and dynamic libraries.
Solution

The basic outline is as follows:
1.

1. Ifyou are building the dependent libraries from the source, and they don't come with their own
IDE projects or makefiles, create projects for them, as described in Recipe 1.11 and Recipe
1.12.

Create a new project and specify that you wish to build an executable rather than a library.

wn

3. Choose a build configuration (e.g., debug versus release, single-threaded versus multithreaded).

4. Specify the name of your executable and the directory in which it should be created.
5.

5. Add your source files to the project.

6.

6. Tell the compiler where to find the headers for the dependent libraries.

7.

7. Tell the linker what libraries to use and where to find them.

8.

8. If your IDE supports project groups, add all the projects mentioned above to a single project
group and specify the dependency relationships between them.

9. Ifyour IDE supports project groups, build the project group from step 8. Otherwise, build the
projects individually, taking care to build each project before the projects that depend on it.

As with Recipe 1.11 and Recipe 1.12, the steps in this outline vary somewhat depending on the IDE.
The third step is covered in detail in Recipes Recipe 1.21, Recipe 1.22, and Recipe 1.23. For now, you
should use the default settings wherever possible.

For example, here's how to build an executable from the source code in Example 1-3 using the Visual
C++IDE.

Select New==> Project from the File menu, select Visual C++[11] in the left pane, select Win32
Console Application and enter hellobeatles as your project's name. From the Win32 Application
Wizard go to Application Settings, select Console Application and Empty Project, and press Finish. You
should now have an empty project hellobeatles.vcproj with two build configurations, Debug and
Release, the former being the active configuration. You should also have a solution kellobeatles.sln

YL T T I & I e

Page 64

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 65

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 66

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 1.14. Obtaining GNU make

Problem

You want to obtain and install the GNU make utility, useful for building libraries and executables from
source code.

Solution

The solution depends on your operating system.

Windows

While you can obtain prebuilt binaries for GNU make from several locations, to get the most out of

GNU make it should be installed as part of a Unix-like environment. [recommend using either Cygwin
or MSYS, which is a part of the MinGW project.

o
f;. Cygwin and MinGW are described in Recipe 1.1.

‘..‘
L

If you installed Cygwin, as described in Recipe 1.1, you already have GNU make. To run it from the
Cygwin shell, simply run the command make.

To install MSY'S, begin by installing MinGW, as described in Recipe Recipe 1.1. A future version of the
MinGW installer may give you the option of installing MSY'S automatically. For now, follow these
additional steps.

First, from the MinGW homepage, http:/www.mingw.org, go to the MinGW download area and
download the latest stable version of the MSYS installation program. The name of the installation
program should be MSYS-<version>.exe.

Next, run the installation program. You will be asked to specify the location of your MinGW installation
and the location where MSY'S should be installed. When the installation program completes, the MSY'S
installation directory should contain a file named msys. bat. Running this script will display the MSYS
shell, a port of the bash shell from which you can run GNU make and other mingw programs such as
g++, ar, ranlib, and dlltool.

i
-.
i n
[

To use MSYS it is not necessary for the bin subdirectories of either your
MinGW installation or your MSY'S installation to be in your PATH environment
variable.

= I

Unix

First, check whether GNU matke is installed on your system by running make -v from the command line.
If GNU make is installed, it should print a message like the following:

GNU Make 3.80
Copyright (C) 2002 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. Page 67

http://www.mingw.org
ftp://ftp.gnu.org/pub/gnu/make
http://www.mingw.org
ftp://ftp.gnu.org/pub/gnu/make
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 68

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 69

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 1.15. Building A Simple ""Hello, World" Application
with GNU make

Problem
You want to use GNU make to build a simple "Hello, World" program, such as that in Example 1-4.
Solution

Before you write your first makefile, you'll need to know a little terminology. A makefile consists of a

collection of rules of the form
targets: prerequisites
command-script

Here targets and prerequisites are space-separated strings, and command-script consists of zero or
more lines of text, each of which begins with a Tab character. Targets and prerequisites are usually files
names, but sometimes they are simply formal names for actions for make to perform. The command
script consists of a sequence of commands to be passed to a shell. Roughly speaking, a rule tells make to
generate the collection of targets from the collection of prerequisites by executing the command script.

i

il Whitespace in makefiles is significant. Lines containing command scripts must
L begin with a Tab rather than a Space this is a source of some of the most

common beginner errors. In the following examples, lines which begin with a

Tab are indicated by an indentation of four characters.

.:;.‘

Now you're ready to begin. Create a text file named makefile in the directory containing your source
file. In this file, declare four targets. Call the first target all, and specify the name of the executable you
wish to build as its sole prerequisite. It should have no command script. Give the second target the same
name as your executable. Specify your application's source file as its prerequisite, and specify the
command line needed to build the executable from the source file as your target's command script. The
third target should be called install. It should have no prerequisites, and should have a command script to
copy the executable from the directory containing the makefile to the directory where you want it
installed. The last target should be called clean. Like install, it should have no prerequisites. Its command
script should remove the executable and the intermediate object file from the current directory. The clean
and install targets should both be labeled as phonytargets, using the PHONY attribute.

For example, to build an executable from the source code in Example 1-4 using GCC, your makefile
might look as shown in Example 1-14.

Example 1-14. Makefile to build the executable hello with GCC
This is the default target, which will be built when
you invoke make
.PHONY: all
all: hello

This rule tells make how to build hello from hello.cpp
hello: hello.cpp
g+t -o hello hello.cpp

This rule tells make to copy hello to the binaries subdirectory,
creating it if necessary
.PHONY: install

A~ ~T1 7 o

Page 70

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 71

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 72

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 1.16. Building a Static Library with GNU Make
Problem

You want to use GNU make to build a static library from a collection of C++ source files, such as those
listed in Example 1-1.

Solution
First, create a makefile in the directory where you want your static library to be created, and declare a

phony target all whose single prerequisite is the static library. Next, declare your static library target. Its
prerequisites should be the object files that the library will contain, and its command script should be a

command line to build the library from the collection of object files, as demonstrated in Recipe 1.3. If you

are using GCC or a compiler with similar command-line syntax, customize the implicit patterns rules, if
necessary, by modifying one or more of the variables CXX, CXXFLAGS, etc. used in make's database
of implicit rules, as shown in Recipe 1.15. Otherwise, write a pattern rule telling make how to compile
.cpp files into object files, using the command lines from Table 1-4 and the pattern rule syntax explained
in Recipe 1.16. Next, declare targets indicating how each of your library's source files depends on the
headers it includes, directly or indirectly. You can write these dependencies by hand or arrange for them
to be generated automatically. Finally, add install and clean targets as demonstrated in Recipe 1.15.

For example, to build a static library from the source files listed in Example 1-2 using GCC on Unix,
create a makefile in the directory johnpaul, as shown in Example 1-20.

Example 1-20. Makefile for libjohnpaul.a using GCC on Unix

Specify extensions of files to delete when cleaning
CLEANEXTS = 0 a

Specify the target file and the install directory
OUTPUTFILE = libjohnpaul.a
INSTALLDIR = ../binaries

Default target
.PHONY: all
all: $(OUTPUTFILE)

Build libjohnpaul.a from john.o, paul.o, and johnpaul.o
$ (OUTPUTFILE) : john.o paul.o johnpaul.o

ar ru $@ $”

ranlib $@

No rule to build john.o, paul.o, and johnpaul.o from .cpp
files is required; this is handled by make's database of
implicit rules

.PHONY: install
install:
mkdir -p $(INSTALLDIR)
cp -p S$(OUTPUTFILE) $(INSTALLDIR)

.PHONY: clean
clean:
for file in $(CLEANEXTS); do rm -f *.$$file; done

Indicate dependencies of .ccp files on .hpp files
john.o: john.hpp

paul.o: paul.hpp

johnpaul.o: john.hpp paul.hpp johnpaul.hpp

Page 73

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 74

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 75

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 1.17. Building a Dynamic Library with GNU Make
Problem

You wish to use GNU make to build a dynamic library from a collection of C++ source files, such as
those listed in Example 1-2.

Solution

First, create a makefile in the directory where you want your dynamic library to be created, and declare
a phony target all whose single prerequisite is the dynamic library. Next, declare your dynamic library
target. Its prerequisites should be the object files from which the library will be built, and its command
script should be a command line to build the library from the collection of object files, as demonstrated in
Recipe 1.4. If you are using GCC or a compiler with similar command-line syntax, customize the implicit
patterns rules, if necessary, by modifying one or more of the variables CXX, CXXFLAGS, etc. used in
make's database of implicit rules, as shown in Recipe 1.15. Otherwise, write a pattern rule telling make
how to compile .cpp files into object files, using the command lines from Table 1-4 and the pattern rule
syntax explained in Recipe 1.16. Finally, add install and clean targets, as demonstrated in Recipe 1.15,
and machinery to automatically generate source file dependencies, as demonstrated in Recipe 1.16.

For example, to build a dynamic library from the source files listed Example 1-2 using GCC on Unix,
create a makefile in the directory georgeringo, as shown in Example 1-22.

Example 1-22. Makefile for libgeorgeringo.so using GCC
Specify extensions of files to delete when cleaning
CLEANEXTS = o so

Specify the source files, the target files,
and the install directory

SOURCES = george.cpp ringo.cpp georgeringo.cpp
OUTPUTFILE = libgeorgeringo.so

INSTALLDIR = ../binaries

.PHONY: all

all: $(OUTPUTFILE)

Build libgeorgeringo.so from george.o, ringo.o,
and georgeringo.o; subst is the search-and-replace
function demonstrated in Recipe 1.16
$ (OUTPUTFILE) : $ (subst .cpp, .0, $ (SOURCES))
$ (CXX) -shared -fPIC $(LDFLAGS) -o $@ $°

.PHONY: install
install:
mkdir -p $(INSTALLDIR)
cp -p $(OUTPUTFILE) $(INSTALLDIR)

.PHONY: clean
clean:
for file in $(CLEANEXTS); do rm -f *.$$file; done

Generate dependencies of .ccp files on .hpp files
include $ (subst .cpp,.d,$ (SOURCES))

%.d: %.cpp

$(CC) -M $(CPPFLAGS) $< > $@.$$$35; \

sed "s,\($*\)\.o[:1*,\1.0 $SQ@ : ,g' < $Q@.$53S > s@; \
rm -f S@.SSSS

Page 76

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 77

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 78

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 1.18. Building a Complex Application with GNU make

Problem

You wish to use GNU make to build an executable which depends on several static and dynamic
libraries.

Solution

Follow these steps:

1.

1.

2.

2.

Create makefiles for the libraries used by your application, as described in Recipe 1.16 and
Recipe 1.17. These makefiles should reside in separate directories.

Create a makefile in yet another directory. This makefile can be used to build your application,
but only after the makefiles in step 1 have been executed. Give this makefile a phony target all
whose prerequisite is your executable. Declare a target for your executable with prerequisites
consisting of the libraries which your application uses, together with the object files to be built
from your application's .cpp files. Write a command script to build the executable from the
collection libraries and object files, as described in Recipe 1.5. If necessary, write a pattern rule
to generate object files from .cpp files, as shown in Recipe 1.16. Add install and clean targets, as
shown in Recipe 1.15, and machinery to automatically generate source file dependencies, as
shown in Recipe 1.16.

Create a makefile in a directory which is an ancestor of the directories containing all the other
makefiles let's call the new makefile the top-level makefile and the others the subordinate
makefiles. Declare a default target all whose prerequisite is the directory containing the makefile
created in step 2. Declare a rule whose targets consists of the directories containing the
subordinate makefiles, and whose command script invokes make in each target directory with a
target specified as the value of the variable TARGET. Finally, declare targets specifying the
dependencies between the default targets of the subordinate makefiles.

For example, to build an executable from the source files listed in Example 1-3 using GCC on Unix,
create a makefile as shown in Example 1-23.

Example 1-23. Makefile for hellobeatles.exe using GCC

Specify the source files, target files, the build directories,
and the install directory

SOURCES = hellobeatles.cpp
OUTPUTFILE = hellobeatles
LIBJOHNPAUL = libjohnpaul.a
LIBGEORGERINGO = libgeorgeringo.so
JOHNPAULDIR = ../johnpaul
GEORGERINGODIR = ../georgeringo
INSTALLDIR = ../binaries

#

Add the parent directory as an include path
#

CPPFLAGS += -I..

#

Default target

Page 79

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 80

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 81

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 1.19. Defining a Macro
Problem

You want to define the preprocessor symbol name, assigning it either an unspecified value or the value
value.

Solution

The compiler options for defining a macro from the command line are shown in Table 1-16. Instructions
for defining a macro from your IDE are given in Table 1-17. To define a macro using Boost.Build, simply
add a property of the form <define>name[=value] to your target's requirements, as shown in Table
1-15 and Example 1-12.

Table 1-16. Defining a macro from the command line

Toolset Option

All -Dname[=value]

Table 1-17. Defining a macro from your IDE

IDE Configuration

From your project's property pages, go to
Configuration Properties =3 C/C++ —3

Visual C++ Preprocessor and enter name/=value] under
Preprocessor Definitions, using semicolons to
separate multiple entries.

From the Target Settings Window, go to Language

Settings == C/C++ Preprocessor and enter:
CodeWarrior #define name[= value]

in the area labeled Prefix Text.

From Project Options, go to

CtBuilder Directories/Conditionals gt}d enter'name[=va lue]
under Preprocessor Definitions, using semicolons
to separate multiple entries.

From Project Options, select Parameters and

enter:
Dev-C++ -D name[= value]
under C++ Compiler.

Page 82
Dicecrteeinmn

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 83

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 84

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 1.20. Specifying a Command-Line Option from Your

IDE

Problem

You want to pass a command-line option to your compiler or linker, but it doesn't correspond to any of

the project settings available through your IDE.

Solution

Many IDEs provide a way to pass command-line options directly to the compiler or linker. This is

summarized in Table 1-18 and Table 1-19.

Table 1-18. Specifying a compiler option from your IDE

IDE

Visual C++

CodeWarrior

CH++Builder

Dev-C++

Configuration

From your project's property pages, go to
Configuration Properties == C/C++ =3
Command Line and enter the option under
Additional options.

n/a

n/a

From Project Options, select Parameters and enter
the option under C++ Compiler.

Table 1-19. Specifying a linker option from your IDE

IDE

Visual C++

Metrowerks

C++Builder

Dev-C++

Discussion

Configuration

From your project's property pages, go to
Configuration Properties == Linker == Command
Line and enter the option under Additional options.

n/a

n/a

From Project Options, select Parameters and enter
the option under Linker.

Page 85

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 86

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 87

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 1.21. Producing a Debug Build
Problem

You want to build a version of your project that will be easy to debug.
Solution

In general, to produce a debug build, you must;

Disable optimizations

Disable expansion of inline function

o Enable generation of debugging information

Table 1-20 presents the compiler and linker options to disable optimization and inlining; Table 1-21
presents the compiler and linker options to enable debugging information.

Table 1-20. Disabling optimization and inlining from the command line

Toolset Optimization Inlining
GCC -00 -fno-inline[12]
Visual C+tIntel (Windows) -0d -Ob0
Intel (Linux) -00 -Ob0

-opt off -inline off
Comeau (Unix) -00 -no_inlining
Comens Windows | Skt bt
Borland -Od -vi-
Digital Mars -o+none -S -C

[12] It's not necessary to specify this option unless -O3 has also been specified.

Table 1-21. Command-line options for enabling debug information
Page 88

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 89

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 90

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 1.22. Producing a Release Build

Problem

You want to produce a small, fast executable or dynamic library for distribution to your customers.
Solution

In general, to produce a release build you must

Enable optimizations

Enable the expansion of inline function

e Disable the generation of debugging information

Table 1-26 presents the compiler and linker options to enable optimization and inlining. There are no
command-line options for disabling the generation of debugging information: when you build from the
command line, debugging information is disabled by default. If you use the GCC toolset, however, you
can decrease the size of executables and dynamics libraries by specifying the -s option to the linker.

Table 1-26. Compiler options to enable optimization and inlining

Toolset Optimization Inlining

GCC -03 -finline-functions[14]
Visual C++Intel -02 -Obl

Metrowerks -opt full -inline auto -inline level=8
Comeau (Unix) -03

Same as backend, but using a inlining

Comeau (Windows) slash (/) instead of a dash (-)

Borland -02 -vi

Digital Mars -o+time Enabled by default

[14] This option is enabled automatically when -O3 is specified.

Boost.Build provides a simple mechanism for producing a release build: simply add <variant>release to
your target's requirements or use the command-line option variant=release, which can be abbreviated
simply as release.

Page 91

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 92

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 93

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 1.23. Specifying a Runtime Library Variant
Problem

Your toolset comes with several variants of its runtime support libraries and you want to instruct your
compiler and linker which variant to use.

Solution

Runtime libraries supplied with a given toolset can vary depending on whether they are single- or
multithreaded, whether they are static or dynamic, and whether or not they were built with debugging
information.

If you are using Boost.Build, these three choices can be specified using the threading, runtime-link, and
variant features, described in Table 1-15. For example, to specify a statically linked runtime library, add
<runtime-link>static to your target's requirements, or use the command-line option runtime-link=static.
To specify a multithreaded runtime library, add <threading>multi to your target's requirements, or use the
command-line option threading=mullti.

If you are building from the command line, use the compiler and linker options presented in Tables 1-30
through 1-36. The command-line options and library names for debug and release configurations as
generally quite similar; in the following tables, the letters in brackets should be supplied only for debug
configurations. The names of the dynamic variants of the runtime libraries are provided in parentheses;
these libraries must be available at runtime if dynamic linking is selected.

Table 1-30. Compiler options for runtime library selection using Visual C++ or Intel (Windows)

Static linking Dynamic linking
Single-threaded -ML/[d][15] n/a
. i -MD[d](msvcrt[d].dll,
Multithreaded MT[d] msver80/d].dil16]

[15] Beginning with Visual Studio 2005, currently in beta, the options -ML and -MLd have been
deprecated, and single-threaded, statically linked runtime libraries are no longer distributed.

[16] Previous versions of Visual C++used the DLL's msvcr71.dll, msver71d.dll, msver70.dll,
msver70d.dll, etc.

Table 1-31. Compiler options for runtime library selection using Metrowerks (Windows)

Static linking Dynamic linking
Single-threaded -runtime ss[d] n/a
Multithreaded -runtime sm[d] -runtime dm|dj(

MSL_AlI-DLL90 x86[D].dll)

Page 94

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 95

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 96

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 1.24. Enforcing Strict Conformance to the C++
Standard

Problem
You want your compiler to accept only programs that conform to the C++ language standard.
Solution

Command-line options for specifying strict conformance to the C++ standard are listed in Table 1-37.
Instructions for enforcing strict conformance from your IDE are given in Table 1-38.

Some of the compiler options I introduced in Table 1-6 can be considered
8% conformance options. Examples include options to enable basic language
features such as wide-character support, exceptions, and runtime type
information. I've omitted these in Table 1-37.

Table 1-37. Enforcing strict conformance from the command line

Toolset Command-line compiler options

GCC -ansi -pedantic-errors

Visual C++ -Za

Intel (Windows) -Za -QOms0

Intel (Linux) -strict-ansi[19

Metrowerks -ansi strict -iso_templates on -msext off
Comeau (Windows) A

Comeau (Unix) strict or -A

Borland -A[20]

Digital Mars -4

[19] Versions of the Intel compiler for Linux prior to 9.0 used the option -strict_ansi. When using
-strict-ansi or -strict _ansi, it may be necessary to enable Intel's standard library, using the option
-cxxlib-icc.
Page 97
[207 With the option -A, some of the standard headers from the STLPort library may fail to compile.

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 98

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 99

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 1.25. Causing a Source File to Be Linked
Automatically Against a Specified Library

Problem

You've written a library that you'd like to distribute as a collection of headers and prebuilt static or
dynamic libraries, but you don't want users of your library to have to specify the names of the binaries
when they link their applications.

Solution

If you are programming for Windows and using the Visual C++, Intel, Metrowerks, Borland, or Digital
Mars toolsets, you can use pragma comment in your library's headers to specify the names, and
optionally the full file pathnames, of the prebuilt binaries against which any code that includes the headers
should be linked.

For example, suppose you want to distribute the library from Example 1-1 as a static library
libjohnpaul.lib together with the header johnpaul hpp. Modity the header as shown in Example 1-26.

Example 1-26. Using pragma comment
#ifndef JOHNPAUL HPP INCLUDED
#define JOHNPAUL HPP INCLUDED

#pragma comment (1lib, "libjohnpaul")
void johnpaul ();

#endif // JOHNPAUL HPP_ INCLUDED

With this change, the Visual C++, Intel, Metrowerks, Borland, and Digital Mars linkers will automatically
search for the library libjohnpaul.lib when linking code that includes the header johnpaul.hpp.

Discussion

In some ways, linking can be a more difficult phase of the build process than compiling. One of the most
common problems during linking occurs when the linker finds the wrong version of a library. This is a
particular problem on Windows, where runtime librariesand the libraries that depend on themfrequently
come in many variants. For this reason, libraries for Windows are often distributed with names mangled
to reflect the various build configurations. While this helps to reduce version conflict, it also makes linking
harder because you have to specify the correct mangled name to the linker.

For this reason, pragma comment is a very powerful tool. Among other things, it allows you to specify
the correct mangled name of a library in a header file, saving the user the trouble of having to understand
your name-mangling convention. If, in addition, you design your installation process to copy the binary
files to a location automatically searched by the linkersuch as the /ib subdirectory of the Visual C++,
CodeWarrior, or C++Builder root directoriesprogrammers will be able to use your library simply by
including your headers.

So far, so good. There's just one problem: pragma comment is not recognized by all compilers. If you
wish to write portable code, you should invoke a pragma only after verifying that it is supported by the

toolset being used. For example, you could modify johnpaul.cpp to read:
#ifndef JOHNPAUL HPP_INCLUDED
#define JOHNPAUL HPP_INCLUDED

#1f defined(MSC VER) || \

Page 100

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 101

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 102

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 1.26. Using Exported Templates
Problem

You want to build a program that uses exported templates, meaning that it declares templates in headers
with the export keyword and places template implementations in .cpp files.

Solution

First, compile the .cpp files containing the template implementations into object files, passing the
compiler the command-line options necessary to enable exported templates. Next, compile and link the
.cpp files that use the exported templates, passing the compiler and linker the command-line options
necessary to enable exported templates as well as the options to specify the directories that contain the
template implementations.

The options for enabling exported templates are given in Table 1-39. The options for specifying the
location of template implementations are given in Table 1-40. If your toolset does not appear in this table,

it likely does not support exported templates.

Table 1-39. Options to enable exported templates

Toolset Script

Comeau (Unix) export, -A or strict
Comeau (Windows) export or A

Intel (Linux) -export or -strict-ansi[22

[22] Versions of the Intel compiler for Linux prior to 9.0 used the option -strict_ansi.

Table 1-40. Option to specify the location of template implementations

Toolset Script
Comeau template_directory=<path>
Intel (Linux) -export_dir<path>

For example, suppose you want to compile the program displayed in Example 1-27. It consists of three
files:

The file plus.hpp contains the declaration of an exported function template plus().

The file plus.cpp contains the definition of plus(). Page 103

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 104

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

=1 NExT

Chapter 2. Code Organization

o _Introduction

e Recipe 2.1. Making Sure a Header File Gets Included Only Once

e Recipe 2.2. Ensuring You Have Only One Instance of a Variable Across Multiple Source Files

e Recipe 2.3. Reducing #includes with Forward Class Declarations

e Recipe 2.4. Preventing Name Collisions with Namespaces

e Recipe 2.5. Including an Inline File

K==a NExT 9

Please register to remove this banner.

Page 105

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 106

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Introduction

Perhaps one of the reasons C++ has been so popular is its ability to serve small, large, and massive
projects well. You can write a few classes for a small prototype or research project, and as the project
grows and people are added, C++ will allow you to scale the application into modules that have varying
degrees of independence. The trade-off is that you have to make time to do some manual reorganization
along the way (adding namespaces, rearranging your header files' physical locations, etc.). Usually this is
worth it though, because you can make your application modular and let different people focus only on
their logical, functional areas.

The manual labor that you have to invest along the way is inversely proportional to the amount of time
you spend designing modularity in the first place. Start with some of the good techniques for
modularization, and your code base will scale.

If you don't already use namespaces, you've probably at least heard of them, and very likely you use one
already: the std namespace, which is the namespace that contains the standard library. Namespaces are
not used as frequently as they ought to be, in my experience, but that's not because they're complicated
or using them requires much effort. Recipe 2.3 explains how to modularize code with namespaces.

Many of the recipes in this chapter describe techniques that you apply from within header files. Since
there are a number of facilities discussed, each explaining a different part of a header file, I have included
Example 2-1 in the introduction, which shows what a typical header file looks like that uses all of the
techniques described in this chapter.

Example 2-1. A header file
#ifndef MYCLASS H // #include guards, Recipe 2.0
#define MYCLASS H

#include <string>
namespace mylib { // Namespaces, Recipe 2.3

class AnotherClass; // forward class declarations, Recipe 2.2
class Logger;

extern Logger* gpLogger; // External storage declaration, Recipe 2.1

class MyClass {
public:
std::string getval() const;
//
private:
static int refCount ;
std::string val ;
}
// Inline definitions, Recipe 2.4
inline std::string MyClass::getVal() const {

return(val);

}
#include "myclass.inl"
} // namespace

#endif // MYCLASS H

Once you have your header file written and out of the way, most of the time you will need an Page 107

1mMnlementation file fon by which T rmean a o file that coanfatne definifinne and nat 111cf Aecrlaratinne

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 108

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 109

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 2.1. Making Sure a Header File Gets Included Only
Once

Problem

You have a header file that is included by several other files. You want to make sure the preprocessor
scans the declarations in the header file no more than once.

Solution

#define a macro in your header file, and include only the contents of the header file if the macro hasn't
already been defined. You can use this combination of the #ifndef, #define, and #endif preprocessor

directives, as I did in Example 2-1:
#ifndef MYCLASS H _ // #include guards
#define MYCLASS H

// Put everything here...

#endif // MYCLASS H

When the preprocessor scans this header file, one of the first things it will encounter is the #ifndef
directive and the symbol that follows. #ifndef tells the preprocessor to continue processing on the next
line only if the symbol MYCLASS H is not already defined. If it is already defined, then the

preprocessor should skip to the closing_#endif. The line following #ifndef defines MYCLASS H ,soif

this file is scanned by the preprocessor twice in the same compilation, the second time MYCLASS H

is defined. By placing all of your code in between the #ifndef and #endif, you ensure that it is only read
once during the compilation process.

Discussion

If you don't use this technique, which is called using include guards , you've probably already seen
"symbol already defined" compilation errors that result from not taking a protective measure against
multiple definitions. C++ does not allow you to define the same symbol more than once, and if you do
(on purpose or by accident) you get a compilation error. Include guards prevent such errors, and they
are pretty standard practice.

The macros you #define don't have to follow any particular format, but the syntax I used above is
common. The idea is to use a symbol that won't conflict with another macro and cause your file to
inadvertently be skipped during preprocessing. In practice, you may see other techniques, such as
including a header file or module version in the macro, e.g., MYCLASS H V301 , or maybe even
the author's name. It isn't that important how you name it, so long as you are consistent. These macros
should only be referenced by the header file they are protecting, and nowhere else.

In some code you may see external include guards, which are the same as the internal include guards I
described earlier, except that they appear in the file that is including the header file, not the header file
itself:

#ifndef MYCLASS H

#include "myclass.h"
#endif

This short-circuits the inclusion process by not even including the file myclassh.h if the macro
MYCLASS H__ is already defined. External include guards were advocated several years ago to

improve compile times for large projects, but compilers have improved and they are no longer necessary.
Don't use them.

Page 110

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 111

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 112

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 2.2. Ensuring You Have Only One Instance of a
Variable Across Multiple Source Files

Problem

You need the same variable to be used by different modules in a program, and you can only have one
copy of this variable. In other words, a global variable.

Solution

Declare and define the variable in a single implementation file in the usual manner, and use the extern
keyword in other implementation files where you require access to that variable at runtime. Often, this
means including the extern declarations in a header file that is used by all implementation files that need
access to the global variable. Example 2-3 contains a few files that show how the extern keyword can be
used to access variables defined in another implementation file.

Example 2-3. Using the extern keyword

// global.h
#ifndef GLOBAL H // See Recipe 2.0
#define GLOBAL H

#include <string>

extern int x;
extern std::string s;

#endif

// global.cpp
#include <string>

int x = 7;
std::string s = "Kangaroo";

// main.cpp
#include <iostream>

#include "global.h"

using namespace std;

int main() {
cout << "x = " << x << endl;
cout << "s = " << s << endl;
}
Discussion

The extern keyword is a way of telling the compiler that the actual storage for a variable is allocated
somewhere else. extern tells the linker that the variable it qualifies is somewhere in another object file, and
that the linker needs to go find it when creating the final executable or library. If the linker never finds the
extern variable you have declared, or it finds more than one of definition for it, you will get a link error.

Example 2-3 isn't terribly exciting, but it illustrates the point well. My two global variables are declared
and defined in global.cpp:

int x = 7;
std::string s = "Kangaroo";

Page 113

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 114

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 115

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 2.3. Reducing #includes with Forward Class
Declarations

Problem

You have a header file that references classes in other headers, and you need to reduce compilation
dependencies (and perhaps time).

Solution

Use forward class declarations where possible to avoid unnecessary compilation dependencies.
Example 2-4 gives a short example of a forward class declaration.

Example 2-4. Forward class declaration
// myheader.h

#ifndef MYHEADER H

#define MYHEADER H

class A; // No need to include A's header

class B {
public:
void f (const A& a);
/...

private:
A* a ;

}i

#endif

Somewhere else there is a header and perhaps an implementation file that declares and defines the class
A, but from within myheader.h 1 don't care about the details of A: all I need to know is that A is a class.

Discussion

A forward class declaration is a way to ignore details that you don't need to be concerned with. In
Example 2-4, myheader.h doesn't need to know anything about the class A except that it exists and that
it's a class.

Consider what would happen if you #included the header file for A, or, more realistically, the header files
for the half-dozen or so classes you would use in a real header file. Now an implementation file (
myheader.cpp) includes this header, myheader.h, because it contains the declarations for everything. So
far, so good. If you change one of the header files included by myheader.h (or one of the header files
included by one of those files), then all of the implementation files that include myheader.h will need to be
recompiled.

Forward declare your class and these compilation dependencies go away. Using a forward declaration
simply creates a name to which everything else in the header file can refer. The linker has the happy task
of matching up definitions in the implementation files that use your header.

Sadly, you can't always use forward declarations. The class B in Example 2-4 only uses pointers or
references to A, so I can get away with a forward declaration. However, if [use an A member function
or variable, or if | have an object of type A--and not just a pointer or reference to onein my definition for
the class B, suddenly my forward declaration is insufficient. This is because files including myheader.h
need to know the size of B, and if A is a member variable of B, then the compiler needs to know A's size

Page 116

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 117

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 118

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 2.4. Preventing Name Collisions with Namespaces
Problem

You have names from unrelated modules that are clashing, or you want to avoid such clashes by creating
logical groups of code in advance.

Solution

Use namespaces to modularize code. With namespaces, you can group large groups of code in separate
files into a single namespace. You can nest namespaces as deeply as necessary to partition a large
module into submodules, and consumers of your module can selectively expose the elements in your
namespace they want to use. Example 2-5 shows a few of the ways you can use a namespace.

Example 2-5. Using namespaces
// Devices.h

#ifndef DEVICES H

#define DEVICES H

#include <string>
#include <list>

namespace hardware {

class Device {

public:
Device() : uptime (0), status_("unknown") {}
unsigned long getUptime() const;
std::string getStatus() const;
void reset();
private:

unsigned long uptime ;
std::string status ;

b

class DeviceMgr {

public:
void getDevicelds (std::1list<std::string>& ids) const;
Device getDevice (const std::stringé& id) const;
// Other stuff...

}i

#endif // DEVICES H

// Devices.cpp
#include "Devices.h"
#include <string>
#include <list>

namespace hardware {

using std::string;
using std::1list;

unsigned long Device::getUptime() const {
return (uptime);

}

string Device::getStatus() const {

return (status_); Page 119

1

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 120

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Recipe 2.5. Including an Inline File
Problem

You have a number of membe r functions or standalone functions that you want to make inline, but you
don't want to define them all in the class definition (or even after it) in the header file. This way, you keep
declaration and implementation separate.

Solution

Create an .in/ file and #include it at the end of your header file. This is equivalent to putting the function
definition at the end of the header file, but this lets you keep declaration and definition separate. Example
2-6 shows how.

Example 2-6. Using an inline file
// Value.h

#ifndef VALUE H

#define VALUE H

#include <string>

class Value {

public:
Value (const std::stringé& val) : val (val) ({}
std::string getVal() const;

private:

std::string val ;

}i
#include "Value.inl"
#endif VALUE H_

// Value.inl
inline std::string Value::getVal() const {
return(val);

}

This solution doesn't require much explanation. #include is replaced with the contents of its argument, so
what happens here is that the contents of Value.inl are brought into the header file. Any file that includes
this header, therefore, has the definition of the inline functions, but you don't have to clutter up your class
declaration.

=1

Page 121

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

Page 122

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Chapter 3. Numbers
e _Introduction

o Recipe 3.1. Converting a String to a Numeric Type

e Recipe 3.2. Converting Numbers to Strings

o Recipe 3.3. Testing Whether a String Contains a Valid Number

e Recipe 3.4. Comparing Floating-Point Numbers with Bounded Accuracy
e Recipe 3.5. Parsing a String Containing a Number in Scientific Notation

e Recipe 3.6. Converting Between Numeric Types

o Recipe 3.7. Getting the Minimum and Maximum Values for a Numeric Type

e prcy NEXT

B

Please register to remove this banner.

Page 123

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Introduction

Even if you aren't writing scientific or engineering applications, you will usually have to work with
numbers to some degree. This chapter contains solutions to common problems when working with C++'s
numeric types.

Several of the recipes contain techniques for converting numbers of various formats (hexadecimal,
floating-point, or scientific notation) from numeric types to strings or vice versa. Writing code to make
this transformation yourself is cumbersome and tedious, so I present facilities from the standard library or
one of the Boost libraries to make the task easier. There are also a few recipes for dealing with only the
numeric types: safely converting between them, comparing floating-point numbers within a bounded
range, and finding the minimum and maximum values for numeric types.

The recipes in this chapter provide solutions to some general problems you may run into when working
with numbers in C++, but it does not attempt to solve problems that are specific to application domains.
If you are writing scientific or engineering applications, you should also take a look at Chapter 11, which
contains recipes for many common scientific and numerical algorithms.

=1

Please register to remove this banner.

Page 124

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 125

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 3.1. Converting a String to a Numeric Type
Problem

You have numbers in string format, but you need to convert them to a numeric type, such as an int or
float.

Solution

You can do this in one of two ways, with standard library functions or with the lexical cast class in
Boost (written by Kevlin Henney). The standard library functions are cumbersome and unsafe, but they
are standard, and in some cases, you need them, so I present them as the first solution. lexical cast is
safer, easier to use, and just more fun, so I present it in the discussion.

The functions strtol, strtod, and strtoul, defined in <cstdlib>, convert a null-terminated character string to
a long int, double, or unsigned long. You can use them to convert numeric strings of any base to a
numeric type. The code in Example 3-1 demonstrates a function, hex2int, that you can use for converting
a hexadecimal string to a long.

Example 3-1. Converting number strings to numbers
#include <iostream>

#include <string>

#include <cstdlib>

using namespace std;

long hex2int (const stringé& hexStr) {
char *offset;

if (hexStr.length() > 2) {
if (hexStr[0] == '0' && hexStr[l] == 'x') {
return strtol (hexStr.c str(), &offset, 0);

}
}
return strtol (hexStr.c str(), &offset, 16);

}

int main() {
string strl = "0x12ABR";
cout << hex2int (strl) << endl;
string str2 = "12AR";
cout << hex2int (str2) << endl;
string str3 = "QAFG";

cout << hex2int (str3) << endl;

Here's the output from this program:
4779

4779

0

The first two strings both contain the hexadecimal number 12AB. The first of the two has the Ox prefix,
while the second doesn't. The third string doesn't contain a valid hexadecimal number; the function simply
returns 0 in that case.

Discussion

Some people might be inclined to write their own function that converts hexadecimal numbers to Page 126

et mnrvmtrey DDt vxvrdav s vomttax it 1A cv I AAT) T A cfea daved 1 lasensx r aleemnc vy snsey 4 A A 4lhtn L vev it v it~y o asne A

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 127

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 128

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 3.2. Converting Numbers to Strings

Problem

You have numeric types (int, float) and you need to put the results in a string, perhaps formatted a
certain way.

Solution

There are a number of different ways to do this, all with benefits and drawbacks. The first technique 1
will present uses a stringstream class to store the string data, because it is part of the standard library and
easy to use. This approach is presented in Example 3-3. See the discussion for alternative techniques.

Example 3-3. Formatting a number as a string
#include <iostream>

#include <iomanip>

#include <string>

#include <sstream>

using namespace std;
int main() {
stringstream ss;
ss << "There are " << 9 << " apples in my cart.";

cout << ss.str() << endl; // stringstream::str() returns a string
// with the contents

ss.str(""); // Empty the string

ss << showbase << hex << 16; // Show the base in hexadecimal
cout << "ss = " << ss.str() << endl;

ss.str("");

ss << 3.14;

cout << "ss = " << ss.str() << endl;

The output of Example 3-3 looks like this:

There are 9 apples in my cart.

ss = 0x10
ss = 3.14
Discussion

A stringstream is a convenient way to put data into a string because it lets you use all of the formatting
facilities provided by the standard input and output stream classes. In the simplest case in Example 3-3, 1

just use the left-shift operator (<<) to write a combination of text and numeric data to my string stream:
ss << "There are " << 9 << " apples in my cart.";

The << operator is overloaded for built-in types to format the input accordingly. When you want to get

the string that holds your data, use the str member function:
cout << ss.str() << endl;

There are lots of stream manipulators in <iomanip>, and you can use them to do all sorts of formatting of
your numeric data as you put it in the string. I used showbase and hex to format my number as
hexadecimal in Example 3-3, but there are lots more. For example, you can set the precision to display
more than the defaiilt niimber of dioife:

Page 129

http://www.boost.org
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 130

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 131

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 3.3. Testing Whether a String Contains a Valid
Number

Problem

You have a string and you need to find out if it contains a valid number.

Solution

You can use the Boost lexical cast function template to test for a valid number. Using this approach, a
valid number can include a preceding minus sign, or a preceding plus sign, but not whitespace. I give a
few examples of the kinds of formats that work with lexical cast in Example 3-5.

Example 3-5. Validating a string number
#include <iostream>
#include <boost/lexical cast.hpp>

using namespace std;
using boost::lexical cast;
using boost::bad lexical cast;

template<typename T>
bool isValid(const stringé& num) {

bool res = true;

try {
T tmp = lexical cast<T>(num);

}

catch (bad lexical cast &e) {
res = false;

return (res) ;

void test (const string& s) {

if (isValid<int>(s))

cout << s << " is a valid integer." << endl;
else

cout << s << " is NOT a valid integer." << endl;

if (isValid<double>(s))

cout << s << " is a valid double." << endl;
else

cout << s << " is NOT a valid double." << endl;

if (isValid<float>(s))

cout << s << " is a valid float." << endl;
else

cout << s << " is NOT a valid float." << endl;

int main() {
test ("12345");
test ("1.23456");

(
(

test ("-1.23456"); Page 132
(

test (" - 1.23456");

WA AN A ey

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 133

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 134

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 3.4. Comparing Floating-Point Numbers with
Bounded Accuracy

Problem

You need to compare floating-point values, but you only want tests for equality, greater-than, or
less-than to be concerned with a limited number of digits. For example, you want 3.33333 and
3.33333333 to show as being equal when comparing to a precision of .0001.

Solution

Write your own comparison functions that take a parameter that bounds the accuracy of the
comparison. Example 3-6 shows the basic technique for such comparison functions.

Example 3-6. Comparing floating-point numbers
#include <iostream>
#include <cmath> // for fabs()

using namespace std;

bool doubleEquals (double left, double right, double epsilon) {
return (fabs(left - right) < epsilon);
}

bool doubleless (double left, double right, double epsilon,
bool orequal = false) {
if (fabs(left - right) < epsilon) {
// Within epsilon, so considered equal
return (orequal);
}
return (left < right);

bool doubleGreater (double left, double right, double epsilon,
bool orequal = false) {
if (fabs(left - right) < epsilon) {
// Within epsilon, so considered equal
return (orequal);
}
return (left > right);

int main() {

double first = 0.33333333;
double second = 1.0 / 3.0;
cout << first << endl;
cout << second << endl;

// Straight equalify test. Fails when you wouldn't want it to.
// (boolalpha prints booleans as "true" or "false")

cout << boolalpha << (first == second) << endl;

// New equality. Passes as scientific app probably wants.
cout << doubleEquals(first, second, .0001) << endl;

// New less-than

cout << doubleLess (first, second, .0001) << endl;

// New Greater-than

cout << doubleGreater (first, second, .0001) << endl;

// New less-than-or-equal-to

cout << doublelLess (first, second, .0001, true) << endl;

Page 135

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 136

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 137

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 3.5. Parsing a String Containing a Number in
Scientific Notation

Problem

You have a string containing a number in scientific notation, and you want to store the number's value in
a double variable.

Solution

The most direct way to parse a scientific notation number is by using the C++ library's built-in
stringstream class declared in <sstream>, as you can see in Example 3-7.

Example 3-7. Parsing a number in scientific notation
#include <iostream>

#include <sstream>

#include <string>

using namespace std;
double sciToDub (const stringé& str)

stringstream ss(str);
double d = 0;

ss >> d;

if (ss.fail()) {
string s = "Unable to format ";
s += str;
s += " as a number!";

throw (s);

return (d);

}
int main() {

try {
cout << sciToDub ("1.234e5") << endl;
cout << sciToDub ("6.02e-2") << endl;
cout << sciToDub ("asdf") << endl;

}

catch (string& e) {
cerr << "Whoops: " << e << endl;

Following is the output from this code:
123400
0.0602
Whoops: Unable to format asdf as a number!

Discussion

The stringstream class is, not surprisingly, a string that behaves like a stream. It is declared in <sstring>.
If you need to parse a string that contains a number in scientific notation (see also Recipe 3.2), a
stringstream will do the job nicely. The standard stream classes already "know" how to parse numbers,

an AAanY xvxrracta v rAa11 F11v e ot oarroantinae fhite TAacie 1 £xva11 AAant haye £

Page 138

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 139

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 140

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 3.6. Converting Between Numeric Types
Problem

You have number of one type and you need to convert it to another, such as an int to a short or a vice
versa, but you want to catch any overflow or underflow errors at runtime.

Solution

Use Boost's numeric_cast class template. It performs runtime checks that throw an exception of type
bad numeric_cast if you will overflow or underflow the variable where you are putting a value. Example
3-8 shows you how to do this.

Example 3-8. Safe numeric conversions
#include <iostream>
#include <boost/cast.hpp>

using namespace std;
using boost::numeric cast;
using boost::bad numeric cast;

int main() {

// Integer sizes

try |
int 1 = 32767;
short s = numeric cast<short>(i);
cout << "s = " << s << endl;

i++; // Now i is out of range (if sizeof (short) is 2)
s = numeric cast<short>(1i);
}

catch (bad numeric cast& e) {

cerr << e.what() << endl;
}
try {
int i = 300;
unsigned int ui = numeric cast<unsigned int>(i);

cout << ui << endl; // Fine

i *= -1;
uili = numeric cast<unsigned int>(i); // i is negative!
}

catch (bad numeric cast& e) {

cerr << e.what() << endl;
}
try {
double d = 3.14;
int i = numeric cast<int>(d);

i = numeric cast<int>(d); // This shaves off the 0.14!
cout << i << endl; // i =3
}

catch (bad numeric cast& e) {
cerr << e.what() << endl:

Page 141

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 142

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 143

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 3.7. Getting the Minimum and Maximum Values for a
Numeric Type

Problem

You need to know the largest or smallest representable value for your platform for a numeric type, such
as an int or double.

Solution

Use the numeric_limits class template in the <limits> header to get, among other things, the largest and
smallest possible values for a numeric type (see Example 3-9).

Example 3-9. Getting numeric limits
#include <iostream>
#include <limits>

using namespace std;

template<typename T>

void showMinMax () {
cout << "min: " << numeric limits<T>::min() << endl;
cout << "max: " << numeric limits<T>::max() << endl;

cout << endl;

int main() {

cout << "short:" << endl;
showMinMax<short>();

cout << "int:" << endl;
showMinMax<int>();

cout << "long:" << endl;
showMinMax<long>();

cout << "float:" << endl;
showMinMax<float>();

cout << "double:" << endl;
showMinMax<double>();

cout << "long double:" << endl;
showMinMax<long double>();

cout << "unsigned short:" << endl;
showMinMax<unsigned short>();
cout << "unsigned int:" << endl;
showMinMax<unsigned int>();

cout << "unsigned long:" << endl;
showMinMax<unsigned long>();

Here's what I get on Windows XP using Visual C++ 7.1:

short:
min: -32768
max: 32767
int:

min: -2147483648
max: 2147483647

long:
min: -2147483648
max: 2147483647

Page 144

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 145

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 146

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Chapter 4. Strings and Text

e _Introduction

e Recipe4.1. Padding a String

e Recipe 4.2. Trimming a String

e Recipe 4.3. Storing Strings in a Sequence

e Recipe 4.4. Getting the Length of a String

e Recipe 4.5. Reversing a String

e Recipe 4.6. Splitting a String

e Recipe 4.7. Tokenizing a String

e Recipe 4.8. Joining a Sequence of Strings

e Recipe 4.9. Finding Things in Strings

e Recipe 4.10. Finding the nth Instance of a Substring

e Recipe 4.11. Removing a Substring from a String

e Recipe 4.12. Converting a String to Lower- or Uppercase

e Recipe 4.13. Doing a Case-Insensitive String Comparison
e Recipe 4.14. Doing a Case-Insensitive String Search

e Recipe 4.15. Converting Between Tabs and Spaces in a Text File

e Recipe 4.16. Wrapping Lines in a Text File

e Recipe 4.17. Counting the Number of Characters, Words, and Lines in a Text File
e Recipe 4.18. Counting Instances of Each Word in a Text File

e Recipe 4.19. Add Margins to a Text File

e Recipe 4.20. Justify a Text File

e Recipe4.21. Squeeze Whitespace to Single Spaces in a Text File
e Recipe 4.22. Autocorrect Text as a Buffer Changes

e Recipe 4.23. Reading a Comma-Separated Text File

e Recipe 4.24. Using Regular Expressions to Split a String

Page 147

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 148

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Introduction

This chapter contains recipes for working with strings and text files. Most C++ programs, regardless of
their application, manipulate strings and text files to some degree. Despite the variety of applications,
however, the requirements are often the samefor strings: trimming, padding, searching, splitting, and so
on; for text files: wrapping, reformatting, reading delimited files, and more. The recipes that follow
provide solutions to many of these common needs that do not have ready-made solutions in the C++
standard library.

The standard library is portable, standardized, and, in general, at least as efficient as homemade
solutions, so in the following examples I have preferred it over code from scratch. It contains a rich
framework for manipulating and managing strings and text, much of which is in the form of the class
templates basic_string (for strings), basic _istream, and basic_ostream (for input and output text streams).
Almost all of the techniques in this chapter use or extend these class templates. In cases where they didn't
have what I wanted, I turned to another area of the standard library that is full of generic, prebuilt
solutions: algorithms and containers.

Everybody uses strings, so chances are that if what you need isn't in the standard library, someone has
written it. The Boost String Algorithms library, written by Pavol Droba, fills many of the gaps in the
standard library by implementing most of the algorithms that you've had to use at one time or another,
and it does it in a portable, efficient way. Check out the Boost project at www.boost.org for more
information and documentation of the String Algorithms library. There is some overlap between the String
Algorithms library and the solutions I present in this chapter. In most cases, I provide examples of or at
least mention Boost algorithms that are related to the solutions presented.

For most examples, I have provided both a nontemplate and a template version. I did this for two
reasons. First, most of the areas of the standard library that use character data are class or function
templates that are parameterized on the type of character, narrow (char) or wide (wchar _t). By following
this model, you will help maximize the compatibility of your software with the standard library. Second,
whether you are working with the standard library or not, class and function templates provide an
excellent facility for writing generic software. If you do not need templates, however, you can use the
nontemplate versions, though I recommend experimenting with templates if you are new to them.

The standard library makes heavy use of templates and uses typedefs to insulate programmers from
some of the verbose syntax that templates use. As a result, I use the terms basic_string, string, and
wstring interchangeably, since what applies to one usually applies to them all. string and wstring are just
typedefs for basic_string<char> and basic_string<wchar t>.

Finally, you will probably notice that none of the recipes in this chapter use C-style strings, i.e.,
null-terminated character arrays. The standard library provides such a wealth of efficient and extensible
support for C++ strings that to use C-style string functions (which were provided primarily for
backward-compatibility anyway) is to forego the flexibility, safety, and generic nature of what you get for
free with your compiler: C++ string classes.

e prcv NExT

Page 149

http://www.boost.org
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

Page 150

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 151

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 4.1. Padding a String

Problem

You need to "pad," or fill, a string with a number of occurrences of some character to a certain width.
For example, you may want to pad the string "Chapter 1" to 20 characters wide with periods, so that it

looks like "Chapter 1........... "

Solution

Use string's insert and append member functions to pad a string with characters on the beginning or end.

For example, to pad the end of a string to 20 characters with X's:
std::string s = "foo";
s.append (20 - s.length(), 'X'"');

To pad the string at the beginning instead:
s.insert(s.begin(), 20 - s.length(), 'X'");

Discussion

The difference in usage between the two functions is insert's first parameter. It is an iterator that points to
the character immediately to the right of where the insert should occur. The begin member function
returns an iterator pointing to the first element in the string, so in the example, the series of characters is
inserted to the left of that. The parameters common to both functions are the number of times to repeat

the character and the character itself.

insert and append are actually member functions of the basic_string class template in the <string™> header
(string is a typedef for basic_string<char> and wstring is a typedef for basic_string<wchar t>), so they
work for strings of narrow or wide characters. Using them as needed, as in the above example, will work
fine, but if you are using basic_string member functions from within your own generic utility functions, you
should build on the standard library's existing generic design and use a function template. Consider the
code in Example 4-1, which defines a generic pad function template that operates on basic_strings.

Example 4-1. A generic pad function template
#include <string>
#include <iostream>

using namespace std;

// The generic approach
template<typename T>
void pad(basic_string<T>& s,
typename basic string<T>::size type n, T c) {
if (n > s.length())
s.append(n - s.length(), c);
}

int main() {

string s "Appendix A";

wstring ws = L"Acknowledgments"; // The "L" indicates that

// this is a wide char
pad(s, 20, '*'); // literal
pad(ws, 20, L'*");

// cout << s << std::endl; // You shouldn't be able to
wcout << ws << std::endl; // run these at the same time

Page 152

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 153

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 154

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 4.2. Trimming a String
Problem

You need to trim some number of characters from the end(s) of a string, usually whitespace.

Solution

Use iterators to identify the portion of the string you want to remove, and the erase member function to
remove it. Example 4-2 presents the function rtrim that trims a character from the end of a string.

Example 4-2. Trimming characters from a string
#include <string>
#include <iostream>

// The approach for narrow character strings
void rtrim(std::string& s, char c) {

if (s.empty())
return;

std::string::iterator p;

for (p = s.end(); p != s.begin() && *--p == c;);
if (*p !'= ¢)
p++;

s.erase(p, s.end());

}

int main()

{

std::string s = "zoo";
rtrim(s, 'o'):;

std::cout << s << '\n';

Discussion

Example 4-2 will do the trick for strings of chars, but it only works for char strings. Just like you saw in
Example 4-1, you can take advantage of the generic design of basic_string and use a function template
instead. Example 4-3 uses a function template to trim characters from the end of any kind of character
string,

Example 4-3. A generic version of rtrim
#include <string>
#include <iostream>

using namespace std;

// The generic approach for trimming single
// characters from a string
template<typename T>
void rtrim(basic_string<T>& s, T c)
{
if (s.empty()) Page 155
return;

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 156

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 157

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 4.3. Storing Strings in a Sequence

Problem

You want to store a set of strings in a sequence that looks and feels like an array.
Solution

Use a vector for array-like storage of your strings. Example 4-6 offers a simple example.

Example 4-6. Store strings in a vector
#include <string>

#include <vector>

#include <iostream>

using namespace std;
int main() {
vector<string> v;

string s = "one";
v.push back(s);

s = "two";
v.push back(s);

s = "three";
v.push back(s);

for (int i = 0; 1 < v.size(); ++1i)
{
cout << v[i] << '\n';

}

vectors follow array semantics for random access (they also do a lot more), so they are easy and familiar
to use. vectors are just one of many sequences in the standard library, however; read on for more of this
broad subject.

Discussion

A vector is a dynamically sized sequence of objects that provides array-style operator|] random access.
The member function push_back copies its argument via copy constructor, adds that copy as the last
item in the vector, and increments its size by one. pop_back does the exact opposite, by removing the
last element. Inserting or deleting items from the end of a vector takes amortized constant time, and
inserting or deleting from any other location takes linear time. These are the basics of vectors. There is a
lot more to them.

In most cases, a vector should be your first choice over a C-style array. First of all, they are dynamically
sized, which means they can grow as needed. You don't have to do all sorts of research to figure out an
optimal static size, as in the case of C arrays; a vector grows as needed, and it can be resized larger or
smaller manually if you need to. Second, vectors offer bounds checking with the at member function (but
not with operator{]), so that you can do something if you reference a nonexistent index instead of simply
watching your program crash or worse, continuing execution with corrupt data. Look at Example 4-7. It
shows how to deal with out-of-bounds indexes.

Page 158

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 159

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 160

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 4.4. Getting the Length of a String

Problem
You need the length of a string.
Solution

Use string's length member function:
std::string s = "Raising Arizona";
int i = s.length();

Discussion

Retrieving the length of a string is a trivial task, but it is a good opportunity to discuss the allocation
scheme for strings (both wide and narrow character). strings, unlike C-style null-terminated character
arrays, are dynamically sized, and grow as needed. Most standard library implementations start with an
arbitrary (low) capacity, and grow by doubling the capacity each time it is reached. Knowing how to
analyze this growth, if not the exact algorithm, is helpful in diagnosing string performance problems.

The characters in a basic_string are stored in a buffer that is a contiguous chunk of memory with a static
size. The buffer a string uses is an arbitrary size initially, and as characters are added to the string, the
buffer fills up until its capacity is reached. When this happens, the buffer grows, sort of. Specifically, a
new buffer is allocated with a larger size, the characters are copied from the old buffer to the new buffer,
and the old buffer is deleted.

You can find out the size of the buffer (not the number of characters it contains, but its maximum size)
with the capacity member function. If you want to manually set the capacity to avoid needless buffer
copies, use the reserve member function and pass it a numeric argument that indicates the desired buffer

size. There is a maximum size on the possible buffer size though, and you can get that by calling max_size.

You can use all of these to observe memory growth in your standard library implementation. Take a look
at Example 4-9 to see how.

Example 4-9. String length and capacity
#include <string>

#include <iostream>

using namespace std;

int main() {

string s = "";
string sr = "";

sr.reserve (9000) ;

cout << "s.length = " << s.length() << '"\n';
cout << "s.capacity = " << s.capacity() << '\n';
cout << "s.max size = " << s.max_size() << '\n';
cout << "sr.length = " << sr.length() << '"\n';
cout << "sr.capacity = " << sr.capacity() << '\n';

cout << "sr.max size " << sr.max_size() << '\n';
for (int 1 = 0; 1 < 10000; ++1i) {

if (s.length() == s.capacity()) {

Page 161

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 162

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Recipe 4.5. Reversing a String
Problem

You want to reverse a string.

Solution

To reverse a string "in place," without using a temporary string, use the reverse function template in the
<algorithm> header:

std::reverse(s.begin(), s.end());
Discussion

reverse works simply enough: it modifies the range you give it such that it is in the opposite order that it
was originally. It takes linear time.

In the event that you want to copy the string to another string, but backward, use reverse iterators, like
this:

std::string s = "Los Angeles";
std::string rs;

rs.assign(s.rbegin(), s.rend());

rbegin and rend return reverse iterators. Reverse iterators behave as though they are looking at the
sequence backward. rbegin returns an iterator that points to the last element, and rend returns an iterator
that points to one before the first; this is exactly opposite of what begin and end do.

But do you need to reverse the string in the first place? With rbegin and rend, any member functions or
algorithms that operate on iterator ranges can be used on the reverse version of the string. And if you
want to search through the string, you can use rfind to do what find does but starting from the end of the
string and moving backward. For large strings, or large numbers of strings, reversing can be expensive,
so avoid it if you can.

e prcy EXT

Please register to remove this banner.

Page 163

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 164

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 4.6. Splitting a String

Problem

You want to split a delimited string into multiple strings. For example, you may want to split the string
"Name|Address|Phone" into three separate strings, "Name", "Address", and "Phone", with the delimiter
removed.

Solution

Use basic_string's find member function to advance from one occurrence of the delimiter to the next, and
substr to copy each substring out of the original string. You can use any standard sequence to hold the
results; Example 4-10 uses a vector.

Example 4-10. Split a delimited string
#include <string>

#include <vector>

#include <functional>

#include <iostream>

using namespace std;

void split(const stringé& s, char c,
vector<string>& v) {
string::size type 1 = 0;
string::size type j = s.find(c);

while (j != string::npos) {
v.push back(s.substr (i, j-i)):;
i = ++3;
3 = s.find(c, 3J);

if (j == string::npos)
v.push back(s.substr (i, s.length())):

}

int main() {
vector<string> v;
string s = "Account Name|Address 1|Address 2|City";
split(s, '"I', Vv);
for (int i = 0; 1 < v.size(); ++1i) {
cout << v[i] << '"\n';

Discussion

Making the example above a function template that accepts any kind of character is trivial; just

parameterize the character type and change references to string to basic_string<T>:
template<typename T>
void split(const basic string<T>& s, T c,
vector<basic string<T> >& v) |
basic string<T>::size type i = 0;
basic string<T>::size type jJ s.find(c);

. . . . Page 165
while (j != basic string<T>::npos) { &
cr w11~ I~~~ A~1 N~ [2 P Y

http://www.boost.org
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 166

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 167

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 4.7. Tokenizing a String

Problem

You need to break a string into pieces using a set of delimiters.

Solution

Use the find_first of and first first not of member functions on basic_string to iterate through the string
and alternately locate the next tokens and non-tokens. Example 4-12 presents a simple StringTokenizer
class that does just that.

Example 4-12. A string tokenizer
#include <string>
#include <iostream>

using namespace std;

// String tokenizer class.
class StringTokenizer {

public:

StringTokenizer (const string& s, const char* delim = NULL)

str (s), count (-1), begin (0), end (0) {
if (!delim)

delim_ = " \fA\n\r\t\v"; //default to whitespace
else

delim = delim;

// Point to the first token

begin = str .find first not of (delim);
end = str .find first of(delim , begin);
}
size t countTokens() {

if (count >= 0) // return if we've already counted
return (count);

string::size type n = 0;
string::size type 1 0;

for (;;) |
// advance to the first token
if ((1i = str .find first not of(delim , 1)) == string::npos)
break;
// advance to the next delimiter
1 = str .find first of(delim , i+1);

n++;
if (i == string::npos)
break;
}
return (count = n);
}
bool hasMoreTokens() {return(begin != end);}
void nextToken (string& s) {
if (begin_ != string::npos && end != string::npos) {
s = str .substr(begin , end -begin);
begin = str_ .find first not of(delim , end);

end = str .find first of(delim , begin);

Page 168

http://www.boost.org
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 169

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 170

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 4.8. Joining a Sequence of Strings
Problem

Given a sequence of strings, such as output from Example 4-10, you want to join them together into a
single, long string, perhaps with a delimiter.

Solution

Loop through the sequence and append each string to the output string. You can handle any standard
sequence as input; Example 4-13 uses a vector of strings.

Example 4-13. Join a sequence of strings
#include <string>
#include <vector>
#include <iostream>
using namespace std;
void join(const vector<string>& v, char c, string& s) {

s.clear();

for (vector<string>::const iterator p = v.begin();

p !'= v.end(); ++p) {
s += *p;
if (p != v.end() - 1)
s += c;

}
int main() {
vector<string> v;

vector<string> v2;
string s;

v.push back(string("fee"));
v.push back(string("fi"));
v.push back(string("foe")):;
v.push back(string ("fum")) ;

join(v, '/', s);

cout << s << '\n';

Discussion

Example 4-13 has one technique that is slightly different from previous examples. Look at this line:

for (vector<string>::const_iterator p = v.begin();

The previous string examples simply used iterators, without the "const" part, but you can't get away with
that here because v is declared as a reference to a const object. If you have a const container object, you
can only use a const_iterator to access its elements. This is because a plain iterator allows writes to the
object it refers to, which, of course, you can't do if your container object is const.

I declared v const for two reasons. First, I know I'm not going to be modifying its contents, so I want

the comniler fa o1ve me an orrar 171 AAa The camniler 1 miich hetter af anatfinoe that ind ofthinog than T

Page 171

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 172

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 173

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 4.9. Finding Things in Strings
Problem

You want to search a string for something. Maybe it's a single character, another string, or one of (or not
of) an unordered set of characters. And, for your own reasons, you have to find it in a particular way,
such as the first or last occurrence, or the first or last occurrence relative to a particular index.

Solution

Use one of basic_string's "find" member functions. Almost all start with the word "find," and their name
gives you a pretty good idea of what they do. Example 4-15 shows how some of the find member
functions work.

Example 4-15. Searching strings
#include <string>
#include <iostream>

int main() {
std::string s = "Charles Darwin";
std::cout << s.find("ar") << '\n'; // Search from the
// beginning
std::cout << s.rfind("ar") << '\n'; // Search from the end
std::cout << s.find first of ("swi") // Find the first of
<< '"\n'; // any of these chars
std::cout << s.find first not of ("Charles") // Find the first
<< '"\n'; // that's not in this
// set
std::cout << s.find last of ("abg") << '\n'; // Find the first of
// any of these chars
// starting from the
// end
std::cout << s.find last not of ("aDinrw") // Find the first
<< '"\n'; // that's not in this
// set, starting from
// the end

Each of the find member functions is discussed in more detail in the "Discussion” section.
Discussion

There are six different find member functions for finding things in strings, each of which provides four
overloads. The overloads allow for either basic_string or charT* parameters (charT is the character
type). Each has a basic_string::size _type parameter pos that lets you specify the index where the search
should begin, and there is one overload with a size_type parameter n that allows you only to search
based on the first n characters from the set.

It's hard to keep track of all of these member functions, so Table 4-2 gives a quick reference of each
function and its parameters.

Table 4-2. Member functions for searching strings Page 174

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 175

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 176

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 4.10. Finding the nth Instance of a Substring
Problem

Given two strings source and pattern, you want to find the nth occurrence of pattern in source.
Solution

Use the find member function to locate successive instances of the substring you are looking for.
Example 4-17 contains a simple nthSubstr function.

Example 4-17. Locate the nth version of a substring
#include <string>
#include <iostream>

using namespace std;

int nthSubstr(int n, const stringé& s,
const string& p) |

string::size type i = s.find(p); // Find the first occurrence
int j;
for (3 = 1; J < n && 1 != string::npos; ++3j)
i = s.find(p, i+1); // Find the next occurrence
if (3 == n)
return (i) ;
else

return(-1);

}

int main()
string s "the wind, the sea, the sky, the trees";
string p = "the";

—_~

cout << nthSubstr(l, s, p) << '"\n';
cout << nthSubstr (2, s, p) << '"\n';
cout << nthSubstr (5, s, p) << '"\n';

Discussion

There are a couple of improvements you can make to nthSubstr as it is presented in Example 4-17.
First, you can make it generic by making it a function template instead of an ordinary function. Second,
you can add a parameter to account for substrings that may or may not overlap with themselves. By
"overlap," I mean that the beginning of the string matches part of the end of the same string, as in the
word "abracadabra," where the last four characters are the same as the first four. Example 4-18
demonstrates this.

Example 4-18. An improved version of nthSubstr
#include <string>
#include <iostream>

using namespace std;

template<typename T>

int nthSubstrg(int n, const basic string<T>& s,
const basic string<T>& p,
bool repeats = false) {

Page 177

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 178

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 179

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 4.11. Removing a Substring from a String
Problem

You want to remove a substring from a string.

Solution

Use the find, erase, and length member functions of basic_string:
std::string t = "Banana Republic";
std::string s = "nana";

std::string::size type i = t.find(s);

if (i != std::string::npos)
t.erase (i, s.length());

This will erase s.length() elements starting at the index where find found the first occurrence of the
substring.

Discussion

There are lots of variations on the theme of finding a substring and removing it. For example, you may
want to remove all instances of a substring instead of just one. Or just the last one. Or the seventh one.
Each time the steps are the same: find the index of the beginning of the pattern you want to remove, then
call erase on that index for the next n characters, where n is the length of the pattern string. See Recipe
4.9 for the different member functions for finding things in strings.

Chances are you also want to make your substring-removal function generic, so you can use it on strings
of any kind of character. Example 4-19 offers a generic version that removes all instances of the pattern
from a string,

Example 4-19. Remove all substrings from a string (generic version)
#include <string>
#include <iostream>

using namespace std;

template<typename T>
void removeSubstrs (basic_string<T>& s,
const basic string<T>& p) {
basic_string<T>::size type n = p.length();

for (basic_string<T>::size type i1 = s.find(p);
i != basic_string<T>::npos;
i = s.find(p))
s.erase (i, n);

}

int main() {
string s = "One fish, two fish, red fish, blue fish";
string p = "fish";

removeSubstrs (s, p);

cout << s << '\n';

Page 180

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 181

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 182

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 4.12. Converting a String to Lower- or Uppercase

Problem

You have a string that you want to convert to lower- or uppercase.

Solution

Use the toupper and tolower functions in the <cctype> header to convert characters to upper- or
lowercase. Example 4-20 shows how to do it using these functions. See the discussion for an alternative.

Example 4-20. Converting a string's case

#include
#include
#include
#include
#include

using nam

<iostream>
<string>
<cctype>
<cwctype>
<stdexcept>

espace std;

void toUpper (basic_string<char>é& s)

for (basic string<char>::iterator p

p
*p

}

void toUpper (basic_string<wchar t>& s)
for (basic_string<wchar t>::iterator p

p
*p

}

= s.end(); ++p) {

= s.end(); ++p) {

void toLower (basic_ string<char>é& s)

for (basic string<char>::iterator p

p
*p

}

void toLower (basic_string<wchar t>& s)
for (basic_string<wchar t>::iterator p

p
*p

}

int main(

= s.end(); ++p) {

= tolower (*p) ;

= s.end(); ++p) {

= towlower (*p);

) A

string s = "shazam";
wstring ws = L"wham";
toUpper (s);

toUpper (ws) ;

cout << "s = " << s << endl;
wcout << "ws = " << ws << endl;

toLower (s) ;
toLower (ws) ;

{

= toupper (*p); // toupper is for char

= towupper (*p); // towupper is for wchar t

{

Page 183

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 184

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 185

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 4.13. Doing a Case-Insensitive String Comparison

Problem

You have two strings, and you want to know if they are equal, regardless of the case of the characters.
For example, "cat" is not equal to "dog," but "Cat," for your purposes, is equal to "cat," "CAT," or "caT."

Solution

Compare the strings using the equal standard algorithm (defined in <algorithm>), and supply your own
comparison function that uses the toupper function in <cctype> (or towupper in <cwctype> for wide
characters) to compare the uppercase versions of characters. Example 4-21 offers a generic solution. It
also demonstrates the use and flexibility of the STL; see the discussion below for a full explanation.

Example 4-21. Case-insensitive string comparison

O J o U b w N

18
19

#include <string>
#include <iostream>
#include <algorithm>
#include <cctype>
#include <cwctype>

using namespace std;

inline bool caselInsCharCompareN (char a, char b) {
return (toupper (a) == toupper (b))’
}

inline bool caseInsCharCompareW (wchar t a, wchar t b) {
return (towupper (a) == towupper (b))

}

bool caselInsCompare (const string& sl, const string& s2) |
return((sl.size() == s2.size()) &&
equal (sl.begin(), sl.end(), s2.begin(),

caseInsCharCompareN)) ;

20
21
22
23
24

}

bool caselInsCompare (const wstringé& sl, const wstring& s2)
return((sl.size() == s2.size()) &&
equal (sl.begin(), sl.end(), s2.begin(),

caseInsCharCompareW)) ;

25
26
27
28
29
30
31
32
33
34
35
36
37
38

}

int main() {
string sl = "In the BEGINNING...";
string s2 = "In the beginning...";

wstring wsl = L"The END";
wstring ws2 = L"the endd";

if (caselInsCompare(sl, s2))
cout << "Equal!\n";

if (caselInsCompare (wsl, ws2))
cout << "Equal!\n";

{

Page 186

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 187

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 188

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 4.14. Doing a Case-Insensitive String Search

Problem

You want to find a substring in a string without regard for case.

Solution

Use the standard algorithms transform and search, defined in <algorithm>, along with your own special
character comparison functions, similar to the approach presented in. Example 4-22 shows how to do
this.

Example 4-22. Case-insensitive string search
#include <string>

#include <iostream>

#include <algorithm>

#include <iterator>

#include <cctype>

using namespace std;
inline bool caseInsCharCompSingle (char a, char b) {

return (toupper (a) == b);

}

string::const iterator caselInsFind(string& s, const string& p) |

string tmp;
transform(p.begin(), p.end(), // Make the pattern
back inserter (tmp), // upper-case
toupper) ;
return (search(s.begin(), s.end(), // Return the iter-
tmp.begin(), tmp.end(), // ator returned by
caseInsCharCompSingle)) ; // search
}
int main() {
string s = "row, row, row, your boat";
string p = "YOUR";
string::const iterator it = caselnsFind(s, p);
if (it !'= s.end()) {

cout << "Found it!\n";

By returning an iterator that refers to the element in the target string where the pattern string starts, you
ensure ease of compatibility with other standard algorithms since most of them accept iterator arguments.

Discussion

Example 4-22 demonstrates the usual mode of operation when working with standard algorithms.
Create the functions that do the work, then plug them into the most appropriate algorithms as function
objects. The charlnsCharCompSingle function does the real work here but, unlike Example 4-21, this
character comparison function only uppercases the first argument. This is because a little later in
caselnsFind, I convert the pattern string to all uppercase before using it to search to avoid having to

uppercase each pattern character multiple times. Page 189

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 190

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 191

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 4.15. Converting Between Tabs and Spaces in a Text
File

Problem

You have a text file that contains tabs or spaces, and you want to convert from one to the other. For
example, you may want to replace all tabs with three spaces, or you may want to do just the opposite
and replace occurrences of some number of spaces with a single tab.

Solution

Regardless of whether you are replacing tabs with spaces or spaces with tabs, use the ifstream and
ofstream classes in <fstream>. In the first (simpler) case, read data in with an input stream, one character
at a time, examine it, and if it's a tab, write some number of spaces to the output stream. Example 4-23
demonstrates how to do this.

Example 4-23. Replacing tabs with spaces
#include <iostream>

#include <fstream>

#include <cstdlib>

using namespace std;
int main(int argc, char** argv) {

if (argc < 3)
return(EXIT_FAILURE);

)

ifstream in(argv[1l]);
[(21);

ofstream out (argv

if (!'in || !'out)
return(EXIT_FAILURE);

char c;
while (in.get(c)) {
if (c == "\t")
out << " "; // 3 spaces
else
out << ¢y

}
out.close();

if (out)
return (EXIT SUCCESS) ;

else
return (EXIT FAILURE) ;

If, instead, you need to replace spaces with tabs, see Example 4-24. It contains the function
spacesToTabs that reads from an input stream, one character at a time, looking for three consecutive
spaces. When it finds three in a row, it writes a tab to the output stream. For all other characters, or for
fewer than three spaces, whatever is read from the input stream is written to the output stream.

Example 4-24. Replacing spaces with tabs
#include <iostream>
#include <istream>

B T L IR, [T

Page 192

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 193

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 194

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 4.16. Wrapping Lines in a Text File
Problem

You want to "wrap" text at a specific number of characters in a file. For example, if you want to wrap
text at 72 characters, you would insert a new-line character after every 72 characters in the file. If the file
contains human-readable text, you probably want to avoid splitting words.

Solution

Write a function that uses input and output streams to read in characters with istream::get(char), do some
bookkeeping, and write out characters with ostream::put(char). Example 4-25 shows how to do this for
text files that contain human-readable text without splitting words.

Example 4-25. Wrapping text
#include <iostream>
#include <fstream>
#include <cstdlib>
#include <string>
#include <cctype>
#include <functional>

using namespace std;

void textWrap(istream& in, ostreamé& out, size t width) {

string tmp;
char cur = '\0';
char last = '\0';
size t 1 = 0;
while (in.get(cur)) {
if (++1i == width) {
ltrimws (tmp) ; // ltrim as in Recipe
out << '"\n' << tmp; // 4.1

i = tmp.length();
tmp.clear();
} else if (isspace(cur) && // This is the end of
!isspace(last)) { // a word
out << tmp;
tmp.clear();
}
tmp += cur;
last

cur;

}

int main(int argc, char** argv) {
if (argc < 3)
return (EXIT FAILURE) ;

int w = 72;
ifstream in(argv[1l]);
ofstream out (argv([2]);

if (!'in |] !'out)
return (EXIT FAILURE) ;

if (argc == 4)
w = atoi(argv[3]);

Page 195

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 196

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 197

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 4.17. Counting the Number of Characters, Words, and
Lines in a Text File

Problem

You have to count the numbers of characters, words, and linesor some other type of text elementin a
text file.

Solution

Use an input stream to read the characters in, one at a time, and increment local statistics as you
encounter characters, words, and line breaks. Example 4-26 contains the function countStuff, which does
exactly that.

Example 4-26. Calculating statistics about a text file
#include <iostream>

#include <fstream>

#include <cstdlib>

#include <cctype>

using namespace std;

void countStuff (istream& in,
int& chars,
int& words,
int& lines) {

char cur = '"\0';
char last = '\0';
chars = words = lines = 0;
while (in.get(cur)) {
if (cur == '\n' ||
(cur == '\f' && last == '"\r'"))
lines++;
else
chars++;
if (!std::isalnum(cur) && // This is the end of a
std::isalnum(last)) // word
words++;
last = cur;
}
if (chars > 0) { // Adjust word and line
if (std::isalnum(last)) // counts for special
words++; // case
lines++;

}
int main(int argc, char** argv) {

if (argc < 2)
return (EXIT_FAI LURE) ;

ifstream in(argv[1l]);

if (!in)
exit (EXIT FAILURE);

Page 198
int ¢, w, 1;

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 199

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 200

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 4.18. Counting Instances of Each Word in a Text File
Problem

You want to count the number of occurrences of each word in a text file.

Solution

Use operator>>, defined in <string>, to read contiguous chunks of text from the input file, and use a
map, defined in <map>, to store each word and its frequency in the file. Example 4-27 demonstrates

how to do this.

Example 4-27. Counting word frequencies

1 #include <iostream>

2 #include <fstream>

3 #include <map>

4 #include <string>

5

6 typedef std::map<std::string, int> StrIntMap;
7

8 void countWords (std::istream& in, StrIntMapé& words)
9

10 std::string s;

11

12 while (in >> s) {

13 ++words([s];

14 }

15 }

16

17 int main(int argc, char** argv) {

18

19 if (argc < 2)

20 return (EXIT FAILURE) ;

21

22 std::ifstream in(argv[1l]);

23

24 if (!in)

25 exit (EXIT FAILURE) ;

26

27 StrIntMap w;

28 countWords (in, w);

29

30 for (StrIntMap::iterator p = w.begin();
31 p !'= w.end(); ++p) {

32 std::cout << p->first << " occurred "
33 << p->second << " times.\n";
34 }

35 1}

Discussion

Example 4-27 looks simple enough, but there is more going on than it appears. Most of the subtleties
have to do with maps, so let's talk about them first.

If you're not familiar with maps you should be. A map is a container class template that 1s part of the

fels n) R TS T T S D, B T D R S 1T 1

Page 201

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 202

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 203

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 4.19. Add Margins to a Text File
Problem

Given a text file, you want to add margins to it. In other words, you want to pad either side of each line
with some character so that each line is the same width.

Solution

Example 4-28 shows how to add margins to a file using streams, strings, and the getline function
template.

Example 4-28. Adding margins to a text file
#include <iostream>

#include <fstream>

#include <string>

#include <cstdlib>

using namespace std;
const static char PAD CHAR = '.';

// addMargins takes two streams and two numbers. The streams are for
// input and output. The first of the two numbers represents the
// left margin width (i.e., the number of spaces to insert at the
// beginning of every line in the file). The second number represents
// the total line width to pad to.
void addMargins (istreamé& in, ostreamé& out,

int left, int right) {

string tmp;

while (!in.eof()) {
getline(in, tmp, '\n'); // getline is defined
// in <string>
tmp.insert (tmp.begin(), left, PAD CHAR);
rpad (tmp, right, PAD CHAR); // rpad from Recipe
// 4.2
out << tmp << '\n';

int main(int argc, char** argv) {

if (argc < 3)
return (EXIT FAILURE) ;

ifstream in(argv[1l])
ofstream out (argv[Z] ;

if (!'in || !'out)
return (EXIT FAILURE) ;

int left = 8;
int right = 72;

if (argc == 5) {

left = atoi(argv[3])
right = atoi(argv[4] ;

addMargins (in, out, left, right);

Page 204

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 205

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 206

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 4.20. Justify a Text File

Problem
You want to right- or left-justify text.

Solution

Use streams and the standard stream formatting flags right and left that are part of ios_base, defined in
<ios>. Example 4-29 shows how they work.

Example 4-29. Justify text
#include <iostream>
#include <fstream>
#include <string>
#include <cstdlib>

using namespace std;
int main(int argc, char** argv) {

if (argc < 3)
return (EXIT_FAI LURE) ;

1)
21) 7

ifstream in(argv[l
[

ofstream out (argv
int w = 72;
if (argc == 4)

w = atoi (argv[3]);

string tmp;
out.setf (ios base::right); // Tell the stream to
// right-justify

while (!in.eof()) {
out.width (w) ; // Reset width after
getline (in, tmp, '\n'); // each write

out << tmp << '\n';
}

out.close();

This example takes three arguments: an input file, an output file, and the width to right-justify to. You can

use an input file like this:

With automatic download of Microsoft's (Nasdag:
MSFT) enormous SP2 security patch to the Windows
XP operating system set to begin, the industry
still waits to understand its ramifications. Home
users that have their preferences set to receive
operating-system updates as they are made
available by Microsoft may be surprised to learn
that some of the software they already run on
their systems could be disabled by SP2 or may run
very differently.

and make it look like this:
With automatic download of Microsoft's (Nasdaq:
MSFT) enormous SP2 security patch to the Windows
XP operating system set to begin, the industry Page 207
still waits to understand its ramifications. Home

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 208

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 209

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 4.21. Squeeze Whitespace to Single Spaces in a Text
File

Problem

You have a text file with whitespace of varying lengths in it, and you want to reduce every occurrence of
a contiguous span of whitespace characters to a single space.

Solution

Use the operator>> function template, defined in <string>, to read in continuous chunks of
non-whitespace from a stream into a string. Then use its counterpart, operator<<, to write each of these
chunks to an output stream, and append a single character after each one. Example 4-30 gives a short
example of this technique.

Example 4-30. Squeezing whitespace to single spaces
#include <iostream>

#include <fstream>

#include <string>

using namespace std;
int main(int argc, char** argv) {

if (argc < 3)
return (EXIT FAILURE) ;

ifstream in(argv[1l]);
ofstream out (argv([2]);

if (!'in || !'out)
return (EXIT FAILURE) ;

string tmp;

in >> tmp; // Grab the first word

out << tmp; // Dump it to the output stream

while (in >> tmp) { // operator>> ignores whitespace, so all I have
out << ' '; // to do is add a space and each chunk of non-
out << tmp; // whitespace

}

out.close();

Discussion

This is a simple thing to do if you take advantage of streams and strings. Even if you have to implement a
variation of thisfor example, you may want to preserve new linesthe same facilities do the trick. If you
want to add new lines, you can use the solution presented in Recipe 4.16 to insert them in the right place.

See Also

Recipe 4.15 and Recipe 4.16

Page 210

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 211

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 212

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 4.22. Autocorrect Text as a Buffer Changes
Problem

You have a class that represents some kind of text field or document, and as text is appended to it, you
want to correct automatically misspelled words the way Microsoft Word's Autocorrect feature does.

Solution

Using a map, defined in <map>, strings, and a variety of standard library features, you can implement
this with relatively little code. Example 4-31 shows how to do it.

Example 4-31. Autocorrect text
#include <iostream>
#include <string>

#include <cctype>

#include <map>

using namespace std;
typedef map<string, string> StrStrMap;

// Class for holding text fields
class TextAutoField {

public:
TextAutoField (StrStrMap* const p) : pDict (p) {}
~TextAutoField() {}

void append(char c);
void getText (string& s) {s = buf ;}

private:

TextAutoField();

string buf ;

StrStrMap* const pDict ;
}i

// Append with autocorrect
void TextAutoField::append(char c) {

if ((isspace(c) || ispunct(c)) && // Only do the auto-
buf .length() > 0 && // correct when ws or
!isspace (buf [buf .length() - 1])) { // punct is entered

string::size type i1 = buf .find last of (" \f\n\r\t\v");
i = (i == string::npos) ? 0 : ++i;

string tmp = buf .substr (i, buf .length() - 1i);
StrStrMap::const iterator p = pDict ->find(tmp);

if (p != pDict ->end()) { // Found it, so erase

buf .erase(i, buf .length() - 1i); // and replace
buf += p->second;

Page 213

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 214

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 215

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 4.23. Reading a Comma-Separated Text File
Problem

You want to read in a text file that is delimited by commas and new lines (or any other pair of delimiters
for that matter). Records are delimited by one character, and fields within a record are delimited by

another. For example, a comma-separated text file of employee information may look like the following:
Smith, Bill, 5/1/2002, Active
Stanford, John, 4/5/1999, Inactive

Such files are usually interim storage for data sets exported from spreadsheets, databases, or other file
formats.

Solution

See Example 4-32 for how to do this. If you read the text into strings one contiguous chunk at a time
using getline (the function template defined in <string>) you can use the split function I presented in
Recipe 4.6 to parse the text and put it in a data structure, in this case, a vector.

Example 4-32. Reading in a delimited file
#include <iostream>

#include <fstream>

#include <string>

#include <vector>

using namespace std;

void split(const stringé& s, char c,
vector<string>& v) {
int 1 = 0;
int j = s.find(c);

while (j >= 0) {
v.push back(s.substr (i, j-1i));
i = ++3;
j = s.find(c, J):

if (3 < 0) |
v.push back(s.substr (i, s.length()));
}

}
void loadCSV (istream& in, vector<vector<string>*>& data) {

vector<string>* p = NULL;
string tmp;

while (!in.eof()) {
getline (in, tmp, '\n'); // Grab the next line

p = new vector<string>();

split (tmp, ',', *p); // Use split from
// Recipe 4.7

data.push back(p);

cout << tmp << '\n';
tmp.clear();
} Page 216

http://www.boost.org
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 217

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

@ prev | NEXT

Recipe 4.24. Using Regular Expressions to Split a String
Problem

You want to split a string into tokens, but you require more sophisticated searching or flexibility than
Recipe 4.7 provides. For example, you may want tokens that are more than one character or can take
on many different forms. This often results in code, and causes confusion in consumers of your class or
function.

Solution

Use Boost's regex class template. regex enables the use of regular expressions on string and text data.
Example 4-33 shows how to use regex to split strings.

Example 4-33. Using Boost's regular expressions
#include <iostream>

#include <string>

#include <boost/regex.hpp>

int main() {

std::string s = "who,lives:in-a,pineapple under the sea?";

boost::regex re (", |:|-|\\s+"); // Create the reg exp

boost::sregex token iterator // Create an iterator using a
p(s.begin(), s.end(), re, -1); // sequence and that reg exp

boost::sregex token iterator end; // Create an end-of-reg-exp

// marker
while (p !'= end)

std::cout << *p++ << '\n';

Discussion

Example 4-33 shows how to use regex to iterate over matches in a regular expression. The following line

sets up the regular expression:
boost::regex re (", |:|-[\\s+");

What it says, essentially, is that each match of the regular expression is either a comma, or a colon, or a
dash, or one or more spaces. The pipe character is the logical operator that ORs each of the delimiters

together. The next two lines set up the iterator:

boost::sregex token iterator
p(s.begin(), s.end(), re, -1);

boost::sregex token iterator end;

The iterator p is constructed using the regular expression and an input string. Once that has been built,
you can treat p like you would an iterator on a standard library sequence. A sregex token iterator
constructed with no arguments is a special value that represents the end of a regular expression token
sequence, and can therefore be used in a comparison to know when you hit the end.

Page 218

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Please register to remove this banner.

Page 219

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

=1 NExT

Chapter 5. Dates and Times

o _Introduction

e Recipe 5.1. Obtaining the Current Date and Time
e Recipe 5.2. Formatting a Date/Time as a String
e Recipe 5.3. Performing Date and Time Arithmetic

e Recipe 5.4. Converting Between Time Zones

e Recipe 5.5. Determining a Day's Number Within a Given Year

e Recipe 5.6. Defining Constrained Value Types

=1 NExT

Please register to remove this banner.

Page 220

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Introduction

Dates and times are surprisingly vast and complex topics. As a reflection of this fact, the C++ standard
library does not provide a proper date type. C++ inherits the structs and functions for date and time
manipulation from C, along with a couple of date/time input and output functions that take into account
localization. You can find relief, however, in the Boost date_time Library by Jeff Garland, which is
possibly the most comprehensive and extensible date and time library for C++ available. I will be using it
in several of the recipes. There is an expectation among the C++ community that future date/time
extensions to the standard library will be based on the Boost date_time library.

The Boost date time library includes two separate systems for manipulating dates and times: one for
manipulating times and one for manipulating dates using a Gregorian calendar. The recipes will cover both
systems.

For more information on dates and times, specifically reading and writing them, please see Chapter 13.

Gregorian Calendar and Leap Years

The Gregorian calendar is the most widely used calendar in the Western world today. The
Gregorian calendar was intended to fix a flaw in the Julian calendar. The slow process of
adoption of the Gregorian calendar started in 1582.

The Julian calendar dictates that every fourth year is a leap year, but every hundredth year
is a non-leap year. The Gregorian calendar introduced a new exception that every 400
years should be a leap year.

Leap years are designed to compensate for the Earth's rotation around the sun being out of
synchronization with the length of the day. In other words, dividing the length of a solar year,
by the length of a day is an irrational number. The result is that if the calendar is not adjusted
we would have seasonal drift, where the equinoxes and solstices (which determine the
seasons) would become further out of synchronization with each new year.

e prcv wExT

Page 221

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

Page 222

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 223

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 5.1. Obtaining the Current Date and Time

Problem

You want to retrieve the current date and time from the user's computer, either as a local time or as a
Coordinated Universal Time (UTC).

Solution

Call the time function from the <ctime> header, passing a value of 0 as the parameter. The result will be
atime tvalue. You can use the gmtime function to convert the time_t value to a tm structure representing
the current UTC time (a.k.a. Greenwich Mean Time or GMT); or, you can use the localtime function to
convert the time _t value to a tm structure representing the local time. The program in Example 5-1
obtains the current date/time, and then converts it to local time and outputs it. Next, the program converts
the current date/time to a UTC date/time and outputs that.

Example 5-1. Getting the local and UTC times
#include <iostream>

#include <ctime>

#include <cstdlib>

using namespace std;

int main()

{
// Current date/time based on current system
time t now = time(0);

// Convert now to tm struct for local timezone
tm* localtm = localtime (&now) ;
cout << "The local date and time is: " << asctime (localtm) << endl;

// Convert now to tm struct for UTC
tm* gmtm = gmtime (&now) ;

if (gmtm != NULL) {

cout << "The UTC date and time is: " << asctime (gmtm) << endl;
}
else {

cerr << "Failed to get the UTC date and time" << endl;
return EXIT FAILURE;
}

Discussion

The time function returns a time_t type, which is an implementation-defined arithmetic type for
representing a time period (a.k.a. a time interval) with at least a resolution of one second. The largest time
interval that can be portably represented using a time t is 2,147,483,648 seconds, or approximately 68
years.

A call to time(0) returns a time t representing the time interval from an implementation defined base time
(commonly 0:00:00 January 1, 1970) to the current moment.

The Year 2038 Bug

Page 224

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 225

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 226

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 5.2. Formatting a Date/Time as a String

Problem

You want to convert a date and/or time to a formatted string.

Solution
You can use the time_put template class from the <locale> header, as shown in Example 5-4.

Example 5-4. Formatting a datetime string
#include <iostream>

#include <cstdlib>

#include <ctime>

#include <cstring>

#include <string>

#include <stdexcept>

#include <iterator>

#include <sstream>

using namespace std;

ostream& formatDateTime (ostream& out, const tm& t, const char* fmt) {
const time put<char>& dateWriter = use facet<time put<char> > (out.getloc(
));
int n = strlen(fmt);
if (dateWriter.put (out, out, ' ', &t, fmt, fmt + n).failed()) {
throw runtime error("failure to format date time");

}

return out;

string dateTimeToString(const tm& t, const char* format) {
stringstream s;
formatDateTime (s, t, format):;

return s.str();
}
tm now() {
time t now = time(0);

return *localtime (&now) ;

int main()

{

try |
string s = dateTimeToString(now(), "$SA %B, %d %Y $I:%M%p");
cout << s << endl;
s = dateTimeToString (now(), "%Y-%m-%d S$H:%M:%S");

cout << s << endl;

}

catch(...) {
cerr << "failed to format date time" << endl;
return EXIT FAILURE;

}

return EXIT SUCCESS;

}

Output of the program in Example 5-4 will resemble the following, depending on your local settings:
Sunday July, 24 2005 05:48PM Page 227
2005-07-24 17:48:11

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 228

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 229

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 5.3. Performing Date and Time Arithmetic

Problem

You want to know the amount of time elapsed between two date/time points.

Solution

If both date/time points falls between the years of 1970 and 2038, you can use a time_t type and the
difftime function from the <ctime> header. Example 5-6 shows how to compute the number of days
elapsed between two dates.

Example 5-6. Date and time arithmetic with time t
#include <ctime>

#include <iostream>

#include <cstdlib>

using namespace std;

time t dateToTimeT (int month, int day, int year) {
// january 5, 2000 is passed as (1, 5, 2000)
tm tmp = tm();
tmp.tm mday = day;
tmp.tm mon = month - 1;
tmp.tm year = year - 1900;
return mktime (&tmp) ;

time t badTime() {
return time t(-1);

}

time t now() {
return time (0);

}

int main() {
time t datel = dateToTimeT(1,1,2000);
time t date2 = dateToTimeT(1,1,2001);

if ((datel == badTime()) || (date2 == badTime())) |
cerr << "unable to create a time t struct" << endl;
return EXIT FAILURE;
}
double sec = difftime (date2, datel);
long days = static cast<long>(sec / (60 * 60 * 24));
cout << "the number of days between Jan 1, 2000, and Jan 1, 2001, is ";
cout << days << endl;
return EXIT SUCCESS;

The program in Example 5-6 should output :
the number of days between Jan 1, 2000, and Jan 1, 2001, is 366

Notice that the year 2000 is a leap year because even though it is divisible by 100; it is also divisible by
400, thus it has 366 days.

Discussion
Page 230

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 231

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Recipe 5.4. Converting Between Time Zones

Problem

You want to convert the current time from one time zone to another.

Solution

To convert between time zones, use the time zone conversion routines from the Boost date time library.

Example 5-8 shows how to finds the time in Tucson, Arizona given a time in New York City.

Example 5-8. Converting between time zones

#include <iostream>

#include <boost/date time/gregorian/gregorian.hpp>
#include <boost/date time/posix time/posix time.hpp>
#include <boost/date time/local time adjustor.hpp>

using namespace std;

using namespace boost::gregorian;
using namespace boost::date time;
using namespace boost::posix time;

typedef local adjustor<ptime, -5, us_dst> EasternTZ;
typedef local adjustor<ptime, -7, no_dst> ArizonaTZ;

ptime NYtoAZ (ptime nytime) {
ptime utctime = EasternTZ::local to utc(nytime);
return ArizonaTZ::utc to local (utctime);

}

int main()
{
// May 1lst 2004,
boost::gregorian::date thedate (2004, 6, 1);

ptime nytime (thedate, hours(19)); // 7 pm

ptime aztime = NYtoAZ (nytime);

cout << "On May 1st, 2004, when it was " << nytime.time of day().hours();
cout << ":00 in New York, it was " << aztime.time of day().hours();

cout << ":00 in Arizona " << endl;

The program in Example 5-8 outputs the following:
On May 1lst, 2004, when it was 19:00 in New York, it was 16:00 in Arizona

Discussion

The time zone conversions in Example 5-8 goes through a two-step process. First, I convert the time to
UTC, and then convert the UTC time to the second time zone. Note that the time zones in the Boost
date time library are represented as types using the local adjustor template class. Each type has
conversion functions to convert from the given time zone to UTC (the local to utc function), and to
convert from UTC to the given time zone (the utc_to_local function).

Page 232

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 233

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 234

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 5.5. Determining a Day's Number Within a Given
Year

Problem

You want to determine a day's number within a given year. For example, January 1 is the first day of
each year; February 5 is the 36th day of each year, and so on. But since some years have leap days,
after February 28, a given day doesn't necessarily have the same numbering each year.

Solution

The solution to this problem requires the solution to several problems simultaneously. First, you have to
know how many days are in each month, which, in turn, means you have to know how to determine
whether a year is a leap year. Example 5-9 provides routines for performing these computations.

Example 5-9. Routines for determining a day's number within a given year
#include <iostream>

using namespace std;

enum MonthEnum {
jan = 0, feb =1, mar = 2, apr = 3, may = 4, jun = 5,

jul = 6, aug = 7, sep = 8, oct = 9, nov = 10, dec = 11
b
bool isLeapYear (int y) {
return (y % 4 == 0) && ((y % 100 != 0) || (y % 400 == 0));

const int arrayDaysInMonth[] = {
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
}i

int n;

int arrayFirstOfMonth[] = {
n =0,
n += arrayDaysInMonth[jan],
n += arrayDaysInMonth[feb],
n += arrayDaysInMonth[mar],
n += arrayDaysInMonth[apr],
n += arrayDaysInMonth[may],
n += arrayDaysInMonth[jun],
n += arrayDaysInMonth[jul],
n += arrayDaysInMonth[aug],
n += arrayDaysInMonth([sep],
n += arrayDaysInMonth[::oct],
n += arrayDaysInMonth [nov]

}s

int daysInMonth (MonthEnum month, int year) {
if (month == feb) {
return isLeapYear (year) ? 29 : 28;
}
else {
return arrayDaysInMonth[month];

int firstOfMonth (MonthEnum month, int year) {
return arrayFirstOfMonth[month] + isLeapYear (year);

Page 235

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 236

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 237

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 5.6. Defining Constrained Value Types
Problem

You want self-validating numerical types to represents numbers with a limited range of valid values such
as hours of a day or minutes of an hour.

Solution

When working with dates and times, frequently you will want values that are integers with a limited range
of valid values (i.e., 0 to 59 for seconds of a minute, 0 to 23 for hours of a day, 0 to 365 for days of a
year). Rather than checking these values every time they are passed to a function, you would probably
prefer to have them validated automatically by overloading the assignment operator. Since there are so
many of these types, it is preferable to implement a single type that can handle this kind of validation for
different numerical ranges. Example 5-10 presents a ConstrainedValue template class implementation
that makes it easy to define ranged integers and other constrained value types.

Example 5-10. constrained_value.hpp
#ifndef CONSTRAINED VALUE HPP
#define CONSTRAINED VALUE HPP

#include <cstdlib>
#include <iostream>

using namespace std;

template<class Policy T>

struct ConstrainedValue

{

public:

// public typedefs
typedef typename Policy T policy type;
typedef typename Policy T::value type value type;
typedef ConstrainedvValue self;

// default constructor

ConstrainedValue() : m(Policy T::default value) { }
ConstrainedValue (const self& x) : m(x.m) { }
ConstrainedValue (const value type& x) { Policy T::assign(m, x); }
operator value type() const { return m; }

// uses the policy defined assign function
void assign(const value type& x) {
Policy T::assign(m, Xx);

}

// assignment operations

self& operator=(const value type& x) { assign(x); return *this; }
self& operator+=(const value type& x) { assign(m + x); return *this; }
self& operator-=(const value type& x) { assign(m - x); return *this; }
self& operator*=(const value type& x) { assign(m * x); return *this; }
self& operator/=(const value typeé& x) { assign(m / x); return *this; }
self& operator%=(const value type& x) { assign(m % x); return *this; }
self& operator>>=(int x) { assign(m >> x); return *this; }

self& operator<<=(int x) { assign(m << x); return *this; }

// unary operations

self operator-() { return self(-m); }

self operator+() { return self(-m); } Page 238

self operator!() { return self(!m); }

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 239

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Chapter 6. Managing Data with Containers

o _Introduction

e Recipe 6.1. Using vectors Instead of Arrays
e Recipe 6.2. Using vectors Efficiently

e Recipe 6.3. Copying a vector

e Recipe 6.4. Storing Pointers in a vector

e Recipe 6.5. Storing Objects in a list

e Recipe 6.6. Mapping strings to Other Things
e Recipe 6.7. Using Hashed Containers

e Recipe 6.8. Storing Objects in Sorted Order

e Recipe 6.9. Storing Containers in Containers

e prcv wExT

Please register to remove this banner.

Page 240

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Introduction

This chapter describes the data structures in the standard library that you can use to store data. They are
generally referred to as containers, since they "contain" objects you add to them. This chapter also
describes another sort of container that is not part of the standard library, although it ships with most
standard library implementations, namely the hashed container.

The part of the library that comprises the containers is often referred to as the Standard Template
Library, or STL, because this is what it was called before it was included in the C++ standard. The STL
includes not only the containers that are the subject of this chapter, but iterators and algorithms, which are
the two other building blocks of the STL that make it a flexible, generic library. Since this chapter is
primarily about the standard containers and not the STL in its entirety, I will refer to containers as the
"standard containers" and not "STL containers," as is done in much of the C++ literature. Although I
discuss iterators and algorithms as much as necessary here, both are discussed in more detail in Chapter
1.

The C++ standard uses precise terminology to describe its collection of containers. A "container" in the
C++ standard library is a data structure that has a well-defined interface described in the standard. For
example, any C++ standard library class that calls itself a container must support a member function
begin that has no parameters and that returns an iterator referring to the first element in that container.
There are a number of required constructors and member functions that define what it is to be a container
in C++ terms. There are also optional member functions only some containers implement, usually those
that can be implemented efficiently.

The set of all containers is further subdivided into two different kinds of containers: sequence containers
and associative containers. A sequence container (usually just called a sequence) stores objects in an
order that is specified by the user, and provides a required interface (in addition to container
requirements) for accessing and manipulating the elements. Associative containers store their elements in
sorted order, and therefore do not permit you to insert elements at a specific location, although you can
provide hints when you insert to improve efficiency. Both sequences and associative containers have a
required interface they must support, but only sequences have an additional set of operations that are
only supported by sequences for which they can be implemented efficiently. These additional sequence
operations provide more flexibility and convenience than the required interface.

This sounds a lot like inheritance. A sequence is a container, an associative container is a container, but a
container is not a sequence or an associative container. It's not inheritance, though, in the C++ sense, but
it 1s inheritance conceptually. A vector is a sequence, but it is its own, standalone class; it doesn't inherit
from a container class or some such thing (standard library implementations are allowed freedom in how
they implement vector and other containers, but the standard doesn't mandate that a standard library
implementation include a container base class). A great deal of thought went into the design of the
containers, and if you would like to read more about it go pick up Matt Austern's Generic Programming
and the STL (Addison Wesley).

This chapter has two parts. The first few recipes describe how to use vector, which is a standard
sequence, since it is one of the more popular data structures. They describe how to use a vector
effectively and efficiently. The rest of the recipes discuss most of the other standard containers that are
widely applicable, including the two nonstandard hashed containers I mentioned earlier.

Page 241

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 242

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 243

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 6.1. Using vectors Instead of Arrays
Problem

You have to store things (built-in types, objects, pointers, etc.) in a sequence, you require random
access to elements, and you can't be confined to a statically sized array.

Solution

Use the standard library's vector class template, which is defined in <vector>; don't use arrays. vector
looks and feels like an array, but it has a number of safety and convenience advantages over arrays.
Example 6-1 shows a few common vector operations.

Example 6-1. Using common vector member functions
#include <iostream>

#include <vector>

#include <string>

using namespace std;
int main() {

vector<int> intVec;
vector<string> strVec;

// Add elements to the "back" of the vector with push back
intVec.push back(3);
intVec.push back(9);
intVec.push back(6);

string s = "Army";

strVec.push back(s);

s = "Navy";
strVec.push back(s);
s = "Air Force";

strVec.push back(s);

// You can access them with operator[], just like an array
for (vector<string>::size type i = 0; i1 < intVec.size(); ++1i) {
cout << "intVec[" << 1 << "] = " << intVec[i] << '\n';

}

// Or you can use iterators
for (vector<string>::iterator p = strVec.begin();
p != strVec.end(); ++p) {
cout << *p << '\n';

}

// If you need to be safe, use at() instead of operator[]. It
// will throw out of range if the index you use is > size().
try {

intVec.at (300) = 2;

}
catch (out of range& e) {
cerr << "out of range: " << e.what() << endl;

}

Discussion

Page 244

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 245

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 246

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 6.2. Using vectors Efficiently
Problem

You are using vectors and you have tight space or time requirements and need to reduce or eliminate
overhead.

Solution

Understand how a vector is implemented, know the complexity of insertion and deletion member
functions, and minimize unnecessary memory churn with the reserve member function. Example 6-2
shows a few of these techniques in action.

Example 6-2. Using a vector efficiently
#include <iostream>

#include <vector>

#include <string>

using std::vector;
using std::string;

void f (vector<string>& vec) { // Pass vec by reference (or
// pointer, if you have to)

//
}

int main() {

vector<string> vec(500); // Tell the vector that you plan on
// putting a certain number of objects
// in it at construction
vector<string> vec2;

// Fill up vec...
f (vec);

vec2.reserve (500) ; // Or, after the fact, tell the vector
// that you want the buffer to be big
// enough to hold this many objects

// Fill up vec2...

Discussion

The key to using vectors efficiently lies in knowing how they work. Once you have a good idea of how a
vector is usually implemented, the performance hot spots become obvious.

How vectors work

A vector is, essentially, a managed array. More specifically, a vector<T> is a chunk of contiguous
memory (i.e., an array) that is large enough to hold n objects of type T, where n is greater than or equal
to zero and is less or equal to an implementation-defined maximum size. n usually increases during the
lifetime of the container as you add or remove elements, but it doesn't decrease. What makes a vector
different from an array is the automatic memory management of that array, the member functions for
inserting and retrieving elements, and the member functions that provide metadata about the container,
such as the size (number of elements) and capacity (the buffer size), but also the type information:
vector<T>vahiie tvne 1 T'< tvne vector< TS nointer 1< a nointer-to-T tvne and <o on Thece lact tvwo

Page 247

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 248

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 249

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 6.3. Copying a vector

Problem

You need to copy the contents of one vector into another.

Solution

There are a couple of ways to do this. You can use a copy constructor when you create a vector, or you

can use the assign member function. Example 6-3 shows how to do both.

Example 6-3. Copying vector contents
#include <iostream>

#include <vector>

#include <string>

#include <algorithm>

using namespace std;

// Util function for printing vector contents

template<typename T>

void vecPrint (const vector<T>& vec)

cout << "{";

for (typename vector<T>::const iterator p

p != vec.end(); ++p) {
cout << "{" << *p << "} ",
}

cout << "}" << endl;

int main() {

vector<string> vec(5);

string fool[] = {"My", "way", "or",
vec[0] = "Today";

vec[l] = "is";

vec[2] = "a";

vec[3] = "new";

vec[4] = "day";

vector<string> vec2 (vec);
vecPrint (vec2?) ;

vec.at (0) = "Tomorrow";

vec2.assign(vec.begin(), vec.end(

vecPrint (vec2?) ;

vec2.assign(&foo[0], &fool5]);

vecPrint (vec2?) ;

vector<string>::iterator p;

p = find(vec.begin(), vec.end(

vec2.assign(vec.begin(), p);

chen ,

)); // Copy each element over

"highway"};

// with assign

"new") :

vecPrint (vec2) ; // of vec

Discussion

// Assign works for anything that
// behaves like an iterator

// Copy a subset of the full range

vec.begin (

Page 250

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 251

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 252

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 6.4. Storing Pointers in a vector
Problem

For efficiency or other reasons, you can't store copies of your objects in a vector, but you need to keep
track of them somehow.

Solution

Store pointers to your objects in a vector instead of copies of the objects themselves. But if you do,
don't forget to delete the objects that are pointed to, because the vector won't do it for you. Example 6-4
shows how to declare and work with vectors of pointers.

Example 6-4. Using vectors of pointers
#include <iostream>
#include <vector>

using namespace std;
static const int NUM OBJECTS = 10;
class MyClass { /*...*/ };
int main() {
vector<MyClass*> vec;
MyClass* p = NULL;

// Load up the vector with MyClass objects
for (int i = 0; 1 < NUM OBJECTS; i+4+) |

p = new MyClass();

vec.push back(p);
}

// Do something useful with this data, then delete the objects when
// you're done
for (vector<MyClass*>::iterator pObj = vec.begin();
pObj != vec.end(); ++pObj) {
delete *pObj; // Note that this is deleting what pObj points to,
// which is a pointer

}

vec.clear(); // Purge the contents so no one tries to delete them
// again

Discussion

You can store pointers in a vector just like you would anything else. Declare a vector of pointers like
this:

vector<MyClass*> vec;

The important thing to remember is that a vector stores values without regard for what those values
represent. It, therefore, doesn't know that it's supposed to delete pointer values when it's destroyed. If
you allocate memory, then put pointers to that memory in a vector, you have to delete the memory
yourself when you are done with it. Don't be fooled by the term "container" into thinking that somehow
when you store a pointer in a vector that it assumes ownership.

Page 253

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 254

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 255

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 6.5. Storing Objects in a list

Problem

You need to store items in a sequence, but your requirements don't match up well with a vector.
Specifically, you need to be able to efficiently add and remove items in the middle of the sequence, not

just at the end.

Solution

Use a list, declared in <list>, to hold your data. lists offer better performance and more flexibility when
modifying the sequence at someplace other than the beginning or the end. Example 6-5 shows you how

to use a list, and shows off some of its unique operations.

Example 6-5. Using a list
#include <iostream>
#include <list>
#include <string>
#include <algorithm>

using namespace std;

// A simple functor for printing
template<typename T>
struct printer {
void operator() (const T& s) {
cout << s << '\n';
}
}i

bool inline even(int n) {

[

return(n % 2 == 0);

printer<string> strPrinter;
printer<int> intPrinter;

int main() {

list<string> lstOne;
list<string> 1lstTwo;

lstOne.push back ("Red") ;
lstOne.push back("Green");
lstOne.push back("Blue");

’

lstTwo.push front ("Orange")
lstTwo.push front ("Yellow");
lstTwo.push front ("Fuschia");

for each(lstOne.begin(), // Print each element in the list
lstOne.end(), // with a custom functor, print
strPrinter);

lstOne.sort(); // list has a member for sorting

lstTwo.sort ()

1stOne.merge (1stTwo) ; // Merge the two lists and print

for each(lstOne.begin(), // the results (the lists must be

lstOne.end(), // sorted before merging)

at++Draintar) .

Page 256

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 257

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 258

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 6.6. Mapping strings to Other Things
Problem

You have objects that you need to store in memory, and you want to store them by their string keys.
You need to be able to add, delete, and retrieve items quickly (with, at most, logarithmic complexity).

Solution

Use the standard container map, declared in <map>, to map keys (strings) to values (any type that
obeys value semantics). Example 6-6 shows how.

Example 6-6. Creating a string map
#include <iostream>

#include <map>

#include <string>

using namespace std;

int main() {

map<string, string> strMap;

strMap["Monday"] = "Montag";
strMap|["Tuesday"] = "Dienstag";
strMap|["Wednesday"] = "Mittwoch";
strMap["Thursday"] = "Donnerstag";
strMap["Friday"] = "Freitag";
strMap["Saturday"] = "Samstag";

// strMap.insert (make pair ("Sunday", "Sonntag"));
strMap.insert (pair<string, string>("Sunday", "Sonntag")):;

for (map<string, string>::iterator p = strMap.begin();
p != strMap.end(); ++p) |
cout << "English: " << p->first
<< ", German: " << p->second << endl;

cout << endl;

strMap.erase (strMap.find ("Tuesday"));

for (map<string, string>::iterator p = strMap.begin();
p != strMap.end(); ++p) |
cout << "English: " << p->first
<< ", German: " << p->second << endl;
}
}
Discussion

A map is an associative container that maps keys to values, provides logarithmic complexity for inserting
and finding, and constant time for erasing single elements. It is common for developers to use a map to
keep track of objects by using a string key. This is what Example 6-6 does; in this case, the mapped type
happens to be a string, but it could be nearly anything.

A map is declared like this:
map<typename Key, // The type of the key
typename Value, // The type of the value

Page 259

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 260

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 261

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 6.7. Using Hashed Containers
Problem

You are storing keys and values , you need constant-time access to elements, and you don't need the
elements to be stored in sorted order.

Solution

Use one of the hashed associated containers, hash map or hash_set. Be aware, however, that these are
not standard containers specified by the C++ Standard, rather they are extensions that most standard
library implementations include. Example 6-8 shows how to use a hash_set.

Example 6-8. Storing strings in a hash_set
#include <iostream>

#include <string>

#include <hash set>

int main() {

hash set<std::string> hsString;
string s = "bravo";

hsString.insert (s);

s = "alpha';
hsString.insert (s);
s = "charlie";

hsString.insert (s);

for (hash set<string>::const iterator p = hsString.begin();
p !'= hsString.end(); ++p)
cout << *p << endl; // Note that these aren't guaranteed
// to be in sorted order

Discussion

Hashed containers are popular data structures in any language, and it is unfortunate that C++ Standard
does not require an implementation to supply them. All is not lost, however, if you want to use a hashed
container: chances are that the standard library implementation you are using includes hash map and
hash_set, but the fact that they are not standardized means their interfaces may differ from one standard
library implementation to the next. I will describe the hashed containers that are provided in the STLPort
standard library implementation.

v
-.
L 3
[

STLPort is a free, portable standard library implementation that has been
' around for a long time and provides hashed containers. If you are using a
different library, the interface may be different, but the general idea is the same.

=

The main characteristics of hashed containers (called hashed associative containers by much of the C++
literature) are that they provide, in the average case, constant-time location, insertion, and deletion of
elements; in the worst case, operations require linear complexity. The trade-off for all of these
constant-time operations is that the elements in a hashed container are not stored in order, as they are in
a map.

Page 262

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 263

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 264

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 6.8. Storing Objects in Sorted Order

Problem

You have to store a set of objects in order, perhaps because you frequently need to access ordered
ranges of these objects and you don't want to pay for resorting them each time you do this.

Solution

Use the associative container set, declared in <set>, which stores items in sorted order. It uses the
standard less class template, (which invokes operator< on its arguments) by default, or you can supply
your own sorting predicate. Example 6-10 shows how to store strings in a set.

Example 6-10. Storing strings in a set
#include <iostream>

#include <set>

#include <string>

using namespace std;
int main() {

set<string> setStr;
string s = "Bill";

setStr.insert (s);
s = "Steve";
setStr.insert (s);
s = "Randy";
setStr.insert (s);
s = "Howard";
setStr.insert (s);

for (set<string>::const iterator p = setStr.begin();
p != setStr.end(); ++p)
cout << *p << endl;

Since the values are stored in sorted order, the output will look like this:
Bill

Howard

Randy

Steve

Discussion

A set is an associative container that provides logarithmic complexity insertion and find, and
constant-time deletion of elements (once you have found the element you want to delete). sets are unique
associative containers, which means that no two elements can be equivalent, though you can use a
multiset if you need to store multiple instances of equivalent elements. You can think of a set as a set in
the mathematical sense, that is, a collection of items, with the added bonus that order is maintained
among the elements.

You can insert and find elements, but, like a list, a set does not allow random access to elements. If you
want something in a set, you have to look for it with the find member function, or iterate through the

elements using set<T>::iterator or set<T>::const iterator.
Page 265

Tl Aa AAanlasentts~snr ~F A cnt a1 1A TAAL et aee

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 266

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 267

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 6.9. Storing Containers in Containers

Problem

You have a number of instances of a standard container (lists, sets, etc.), and you want to keep track of

them by storing them in yet another container.

Solution

Store pointers to your containers in a single, master container. For example, you can use a map to store
a string key and a pointer to a set as its value. Example 6-12 presents a simple transaction log class that

stores its data as a map of string-set pointer pairs.

Example 6-12. Storing set pointers in a map
#include <iostream>

#include <set>

#include <map>

#include <string>

using namespace std;

typedef set<string> SetStr;
typedef map<string, SetStr*> MapStrSetStr;

// Dummy database class
class DBConn {
public:
void beginTxn() {}
void endTxn() {}
void execSql (string& sqgl) {}
}i

class SimpleTxnLog {

public:
SimpleTxnLog() {}
~SimpleTxnLog() {purge();}

// Add an SQL statement to the list
void addTxn (const stringé& id,
const string& sqgl) {
SetStr* pSet = log [id]; // This creates the entry for
if (pSet == NULL) { // this id if it isn't there
pSet = new SetStr();
log [id] = pSet;
}
pSet->insert (sql) ;
}

// Apply the SQL statements to the database, one transaction
// at a time

void apply() {
for (MapStrSetStr::iterator p = log_ .begin();
p != log_.end(); ++p) {
conn_->beginTxn();

// Remember that a map iterator actually refers to an object

// of pair<Key,Val>. The set pointer is stored in p->second.

for (SetStr::iterator pSgl = p->second->begin();
pSgl != p->second->end(); ++pSqgl) {
string s = *pSgl:;

Page 268

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 269

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Chapter 7. Algorithms

Introduction

Recipe 7.1. Iterating Through a Container

Recipe 7.2. Removing Objects from a Container
Recipe 7.3. Randomly Shuffling Data

Recipe 7.4. Comparing Ranges

Recipe 7.5. Merging Data

Recipe 7.6. Sorting a Range

Recipe 7.7. Partitioning a Range

Recipe 7.8. Performing Set Operations on Sequences
Recipe 7.9. Transforming Elements in a Sequence

Recipe 7.10. Writing Your Own Algorithm

Recipe 7.11. Printing a Range to a Stream

Please register to remove this banner.

MEXT B

MNEXT B

Page 270

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 271

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Introduction

This chapter describes how to work with the standard algorithms and how to use them on the standard
containers. These algorithms were originally part of what is often referred to as the Standard Template
Library (STL), which is the set of algorithms, iterators, and containers that now belong to the standard
library (Chapter 6 contains recipes for working with the standard containers). I will refer to these simply
as the standard algorithms, iterators, and containers, but keep in mind that they are the same ones that
other authors' refer to as part of the STL. One of the pillars of the standard library is iterators, so the first
recipe explains what they are and how to use them. After that, there are a number of recipes that explain
how to use and extend the standard algorithms. Finally, if what you need isn't in the standard library,
Recipe 7.10 explains how to write your own algorithm.

The recipes presented here are largely biased toward working with the standard containers for two
reasons. First, the standard containers are ubiquitous, and it's better to learn the standard than to reinvent
the wheel. Second, the algorithms in the standard library implementations provide a good model to follow
for interoperability and performance. If you watch how the pros do it in the standard library code, you
are likely to learn a few valuable lessons along the way.

All standard algorithms use iterators. Even if you are already familiar with the concept of iterators, which
1s the subject of the first recipe, take a look at Table 7-1, which contains a list of the conventions I use in

the rest of the chapter when listing function declarations for the standard algorithms.

Table 7-1. Iterator category abbreviations

Abbreviation Meaning

In Input iterator

Out Output iterator

Fwd Forward iterator

Bid Bidirectional iterator
Rand Random-access iterator

The standard algorithms also make use of function objects, or functors. A function object is a class that
has overridden operator() so that it can be called like a function. A functor that returns a bool (and does
not maintain state, and is therefore called pure) is called a predicate, and they are another regular feature
in the standard algorithms. Generally, a predicate takes one or two arguments: if it takes one argument, it
is an unary predicate; and if it takes two, it is called a binary predicate. For the sake of brevity, I use the
abbreviations listed in Table 7-2 when listing function declarations.

Table 7-2. Functor types

Type Name Description

An unary predicate. Takes one argument and

raf11rne 9 hanl

UnPred

Page 272

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 273

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 274

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 7.1. Iterating Through a Container
Problem

You have a range of iteratorsmost likely from a standard containerand the standard algorithms don't fit
your needs, so you need to iterate through them.

Solution

Use an iterator or a const_iterator to access and advance through each of the elements in your container.

In the standard library, algorithms and containers communicate using iterators, and one of the very ideas
of the standard algorithms is that they insulate you from having to use iterators directly unless you are
writing your own algorithm. Even so, you should understand the different kinds of iterators so you can
use the standard algorithms and containers effectively. Example 7-1 presents some straightforward uses
of iterators.

Example 7-1. Using iterators with containers
#include <iostream>

#include <list>

#include <algorithm>

#include <string>

using namespace std;
static const int ARRAY SIZE = 5;

template<typename T,
typename FwdIter>
FwdIter fixOutliersUBound (FwdIter pl,
FwdIter p2,
const T& oldval,
const T& newVal) {
for (;pl != p2; ++pl) {
if (greater<T> (*pl, oldval)) {
*pl = newVal;

int main() {
list<string> 1lstStr;

lstStr.push back("Please");
lstStr.push back("leave");
lstStr.push back("a");

lstStr.push back("message");

// Create an iterator for stepping through the list
for (list<string>::iterator p = lstStr.begin();
p != 1lstStr.end(); ++p) {
cout << *p << endl;

}

// Or I can use a reverse iterator to go from the end

// to the beginning. rbegin returns a reverse iterator

// to the last element and rend returns a reverse iterator

// to one-before-the-first.

for (list<string>::reverse iterator p = lstStr.rbegin();
p != 1lstStr.rend(); ++p) {

Page 275

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 276

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 277

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 7.2. Removing Objects from a Container
Problem

You want to remove objects from a container.

Solution

Use the container's erase member function to erase a single element or a range of elements, and possibly
use one of the standard algorithms to make the job easier. Example 7-2 shows a couple of different ways
to remove elements from a sequence.

Example 7-2. Removing elements from a container

#include <iostream>

#include <string>

#include <list>

#include <algorithm>

#include <functional>

#include "utils.h" // For printContainer(): see 7.10

using namespace std;
int main() {
list<string> lstStr;

IstStr.push back("On") ;
lstStr.push back("a");
lstStr.push back("cloudy");
lstStr.push back("cloudy");
lstStr.push back("day");

list<string>::iterator p;

// Find what you want with find
p = find(lstStr.begin(), lstStr.end(), "day");

p = lstStr.erase(p); // Now p points to the last element

// Or, to erase all occurrences of something, use remove

lstStr.erase (remove (lstStr.begin(), lstStr.end(), "cloudy"),
lstStr.end());

printContainer (1stStr); // See 7.10

Discussion

Use a container's erase member function to remove one or more elements from it. All containers have
two overloads of erase: one that takes a single iterator argument that points to the element you want to
delete, and another that takes two iterators that represent a range of elements you want deleted. To erase
a single element, obtain an iterator referring to that element and pass the iterator to erase, as in Example
71-2:

p = find(lstStr.begin(), 1lstStr.end(), "day");
p = lstStr.erase(p);

This will delete the object that p refers to by calling its destructor, and then do any necessary
reorganization of the remaining elements in the range. The reorganization that happens depends on the
type of container, and therefore the complexity of the operation will vary from one kind of container to

PV M s n Ty B (i JN FRA, DS Y A AT DA PR I SR IS

Page 278

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 279

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 280

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 7.3. Randomly Shuffling Data

Problem

You have a sequence of data, and you need to jumble it into some random order.

Solution

Use the random_shuffle standard algorithm, defined in <algorithm>. random_shuffle takes two
random-access iterators, and (optionally) a random-number generation functor, and rearranges the
elements in the range at random. Example 7-3 shows how to do this.

Example 7-3. Shuffling a sequence at random

#include <iostream>

#include <vector>

#include <algorithm>

#include <iterator>

#include "utils.h" // For printContainer(): see 7.10

using namespace std;
int main() {
vector<int> wv;
back insert iterator<std::vector<int> > p =

back inserter(v);

for (int i = 0; i < 10; ++1)

printContainer (v, true);
random shuffle(v.begin(), v.end());

printContainer (v, true);

Y our output might look like this:

8192057346

Discussion

random_shuffle is intuitive to use. Give it a range, and it will shuffle the range at random. There are two

versions, and their prototypes look like this:
void random shuffle(RndIter first, RndIter last);
void random shuffle(RndIter first, RndIter last, RandFuncé& rand);

In the first version, the "random" is using an implementation-specific random-number generation function,
which should be sufficient for most of your needs. If it isn'tperhaps you want a nonuniform distribution,
e.g., Gaussianyou can write your own and supply that instead using the second version.

Y our random-number generator must be a functor that a single argument and returns a single value, both
of which are convertible to iterator_traits<RndlIter>::difference type. In most cases, an integer will do.

For example, here's my knock-off random-number generator: Page 281
struct RanNumGenFtor {

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 282

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 283

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 7.4. Comparing Ranges
Problem

You have two ranges, and you need to compare them for equality or you need to see which one comes
first based on some ordering on the elements.

Solution

Depending on what kind of comparison you want to do, use one of the standard algorithms equal,
lexicographical compare, or mismatch, defined in <algorithm>. Example 7-4 shows several of them in
action.

Example 7-4. Different kinds of comparisons
#include <iostream>

#include <vector>

#include <string>

#include <algorithm>

#include "utils.h"

using namespace std;
using namespace utils;

int main() {
vector<string> vecl, vec2;
vecl.push back ("Charles");
vecl.push back("in");
vecl.push back ("Charge");
vec2.push back("Charles");

vec2.push back("in");
vec2.push back("charge"); // Note the small "c"

if (equal (vecl.begin(), vecl.end(), vec2.begin())) {
cout << "The two ranges are equal!" << endl;
} else {

cout << "The two ranges are NOT equal!" << endl;

string sl = "abcde";
string s2 = "abcdf";
string s3 = "abc";

cout << boolalpha // Show bools as "true" or "false"

<< lexicographical compare (sl.begin(), sl.end(),
sl.begin(), sl.end()) << endl;

cout << lexicographical compare (sl.begin(), sl.end(),
s2.begin(), s2.end()) << endl;

cout << lexicographical compare (s2.begin(), s2.end(),
sl.begin(), sl.end()) << endl;

cout << lexicographical compare (sl.begin(), sl.end(),
s3.begin(), s3.end()) << endl;

cout << lexicographical compare (s3.begin(), s3.end(),
sl.begin(), sl.end()) << endl;

pair<string::iterator, string::iterator> iters =
mismatch(sl.begin(), sl.end(), s2.begin());
Page 284

cout << "first mismatch = " << *(iters.first) << endl:

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 285

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 286

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 7.5. Merging Data

Problem

You have two sorted sequences and you need to merge them.
Solution

Use either the merge or inplace_merge function template. merge merges two sequences and puts the
results in a third, and inplace_merge merges two contiguous sequences. Example 7-5 shows how.

Example 7-5. Merging two sequences

#include <iostream>

#include <string>

#include <list>

#include <vector>

#include <algorithm>

#include <iterator>

#include "utils.h" // For printContainer(): see 7.10

using namespace std;
int main() {
vector<string> vl, v2, v3;

vl.push back("a");
vl.push back("c");
vl.push back("e");

v2.push back("b");
v2.push back("d");
v2.push back("f");

v3.reserve(vl.size() + v2.size() + 1);

// Use a back inserter from iterator to avoid having to put
// a bunch of default objects in the container. But this doesn't
// mean you don't have to use reserve!
merge (vl.begin(), vl.end(),
v2.begin(), v2.end(),
back inserter<vector<string> >(v3));

printContainer (v3);

// Now make a mess

random shuffle(v3.begin(), v3.end());

sort (v3.begin(), v3.begin() + v3.size() / 2);
sort (v3.begin() + v3.size() / 2, v3.end());

printContainer (v3);

inplace merge(v3.begin(), v3.begin() + 3, v3.end());
printContainer (v3);

// If you are using two lists, though, use list::merge instead.

// As a general rule, blah blah...
list<string> 1lstStrl, 1lstStr2;

Page 287
IstStrl.push back("Frank");

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 288

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 289

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 7.6. Sorting a Range

Problem

You have a range of elements that you need to sort.

Solution

There are a handful of algorithms you can use for sorting a range. You can do a conventional sort
(ascending or descending order) with sort, defined in <algorithm>, or you can use one of the other

sorting functions, such as partial_sort . Have a look at Example 7-6 to see how.

Example 7-6. Sorting

#include <iostream>

#include <istream>

#include <string>

#include <list>

#include <vector>

#include <algorithm>

#include <iterator>

#include "utils.h" // For printContainer(): see 7.10

using namespace std;

int main() {

cout << "Enter a series of strings: ";

istream iterator<string> start(cin);

istream iterator<string> end; // This creates a "marker"
vector<string> v (start, end);

// The sort standard algorithm will sort elements in a range. It
// requires a random-access iterator, so it works for a vector.
sort (v.begin(), v.end());

printContainer (v);
random shuffle(v.begin(), v.end()); // See 7.2
string* arr = new string[v.size()];

// Copy the elements into the array
copy(v.begin(), v.end(), &arr[0]);

// Sort works on any kind of range, so long as its arguments
// behave like random-access iterators.

sort (&arr([0], &arr[v.size()]):;

printRange (&arr[0], &arr[v.size()]1);

// Create a list with the same elements
list<string> lst(v.begin(), v.end());

lst.sort(); // The standalone version of sort won't work; you have
// to use list::sort. Note, consequently, that you

// can't sort only parts of a list.

printContainer (1lst);

A run of Example 7-6 might look like this:

Enter a series of strings: a z by c x dw

N7

Page 290

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 291

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 292

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 7.7. Partitioning a Range
Problem

You have a range of elements that you need to partition in some well-defined way. For example, you
may want all elements less than a particular value moved to the front of the range.

Solution

Use the partition standard algorithm with a predicate functor to move the elements around however you
like. See Example 7-7.

Example 7-7. Partitioning a range

#include <iostream>

#include <istream>

#include <string>

#include <vector>

#include <algorithm>

#include <functional>

#include <iterator>

#include "utils.h" // For printContainer(): see Recipe 7.10

using namespace std;

int main() {

"

cout << "Enter a series of strings: ";

istream iterator<string> start(cin);

istream iterator<string> end; // This creates a "marker"
vector<string> v (start, end);

// Rearrange the elements in v so that those that are less
// than "foo" occur before the rest.
vector<string>::iterator p =
partition(v.begin(), v.end(),
bind2nd (less<string>(), "foo"));
printContainer (v);

cout << "*p = " << *p << endl;

The output for Example 7-7 would look like the following:
Enter a series of strings: a d £ j k1
~Z

After the partition, the iterator p refers to the first element for which less(*p, "foo") is not true.

Discussion

partition takes the beginning and end of a range and a predicate, and moves all elements for which the
predicate is true to the beginning of the range. It returns an iterator to the first element where the
predicate is not TRue, or the end of the range if all elements satisfy the predicate. Its declaration looks
like this:
Bi partition(Bi first, Bi last, Pred pred);
Page 293

D B ANy IR h Y Y Ry TR By R e Bl D IR A PR o) PP R A R DAy T

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 294

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 295

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 7.8. Performing Set Operations on Sequences
Problem

You have sequences that you want to rearrange using set operations like union, difference, or
intersection.

Solution

Use the standard library functions built for exactly this purpose: set union, set dif-ference , and
set_intersection . Each of these performs its respective set operation and places the results in an output
range. See how to do this in Example 7-8.

Example 7-8. Using set operations

#include <iostream>

#include <algorithm>

#include <string>

finclude <set>

#include <iterator>

#include "utils.h" // For printContainer(): see 7.10

using namespace std;

int main() {
cout << "Enter some strings: ";
istream iterator<string> start(cin);
istream iterator<string> end;
set<string> sl (start, end);

cin.clear();

cout << "Enter some more strings: ";
set<string> s2 (++start, end);

set<string> setUnion;
set<string> setlInter;
set<string> setDiff;

set union(sl.begin(), sl.end(),
s2.begin(), s2.end(),
inserter (setUnion, setUnion.begin()));
set difference(sl.begin(), sl.end(),
s2.begin(), s2.end(),
inserter (setDiff, setDiff.begin()));
set intersection(sl.begin(), sl.end(),
s2.begin(), s2.end(),
inserter (setInter, setInter.begin()));

cout << "Union:\n";
printContainer (setUnion) ;
cout << "Difference:\n";
printContainer (setDiff);
cout << "Intersection:\n";
printContainer (setlInter);

The output to this program looks like this (printContainer just prints the contents of a container):

T b Y

Page 296

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 297

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 298

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 7.9. Transforming Elements in a Sequence
Problem

You have a sequence of elements and you have to do something to each one, either in place or as it is
copied to another sequence.

Solution

Use the transform or for each standard algorithms. Both are simple, but allow you to do almost anything
you want to the elements in your sequence. See Example 7-9 for an illustration.

Example 7-9. Transforming data
#include <iostream>
#include <istream>
#include <string>
#include <list>
#include <algorithm>
#include <iterator>
#include <cctype>
#include "utils.h" // For printContainer(): see 7.10

using namespace std;

// Convert a string to upper case
string strToUpper (const stringé& s) {
string tmp;
for (string::const iterator p = s.begin(); p != s.end(); ++p)
tmp += toupper (*p):;
return (tmp) ;

string strAppend(const stringé& sl, const string& s2) {
return(sl + s2);

int main() {

cout << "Enter a series of strings: ";
istream iterator<string> start(cin);
istream iterator<string> end;
list<string> lst(start, end), out;

// Use transform with an unary function...
transform(lst.begin(), lst.end(),

back inserter (out),

strToUpper) ;

printContainer (out) ;

cin.clear();

cout << "Enter another series of strings: ";
list<string> lst2(++start, end);

out.clear();

// ...or a binary function and another input sequence.

transform(lst.begin(), lst.end(), lst2.begin(),
back inserter (out),
strAppend) ;

Page 299

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 300

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 301

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 7.10. Writing Your Own Algorithm
Problem

You need to execute an algorithm on a range and none of the standard algorithms meets your
requirements.

Solution

Write your algorithm as a function template and advertise your iterator requirements with the names of

your template parameters. See Example 7-10 for a variation on the copy standard algorithm.

Example 7-10. Writing your own algorithm

#include <iostream>

#include <istream>

#include <iterator>

#include <string>

#include <functional>

#include <vector>

#include <list>

#include "utils.h" // For printContainer(): see 7.10

using namespace std;

template<typename In, typename Out, typename UnPred>
Out copyIf(In first, In last, Out result, UnPred pred) {
for (;first !'= last; ++first)
if (pred(*first))
*result++ = *first;
return (result) ;

int main() {
cout << "Enter a series of strings: ";
istream iterator<string> start(cin);
istream iterator<string> end; // This creates a "marker"
vector<string> v(start, end);

list<string> 1lst;

copyIf(v.begin(), v.end(), back inserter<list<string> >(lst),
bind2nd (less<string>(), "cookie"));

printContainer (1lst);

A sample run of Example 7-10 will look something like this:
Enter a series of strings: apple banana danish eclaire
~Z

apple banana
You can see that it only copies values less than "cookie" into the destination range.

Discussion

The standard library contains the copy function template, which copies elements from one range to
another, but there is no standard version that takes a predicate and conditionally copies each element

Page 302

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 303

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 304

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 7.11. Printing a Range to a Stream

Problem

You have a range of elements that you want to print to a stream, most likely cout for debugging.
Solution

Write a function template that takes a range or a container, iterates through each element, and uses the
copy algorithm and an ostream_iterator to write each element to a stream. If you want more control over
formatting, write your own simple algorithm that iterates through a range and prints each element to the

stream. (See Example 7-11.)

Example 7-11. Printing a range to a stream
#include <iostream>

#include <string>

#include <algorithm>

#include <iterator>

#include <vector>

using namespace std;
int main() {

// An input iterator is the opposite of an output iterator: it
// reads elements from a stream as if it were a container.
cout << "Enter a series of strings: ";

istream iterator<string> start(cin);

istream iterator<string> end;

vector<string> v(start, end);

// Treat the output stream as a container by using an

// output iterator. It constructs an output iterator where writing
// to each element is equivalent to writing it to the stream.
copy(v.begin(), v.end(), ostream iterator<string>(cout, ", "));

The output for Example 7-11 might look like this:
Enter a series of strings: z x y a b ¢
~7Z

z, X, y, a, b, c,

Discussion

A stream iterator is an iterator that is based on a stream instead of a range of elements in some
container, and stream iterators allow you to treat stream input as an input iterator (read from the
dereferenced value and increment the iterator) or an output iterator (just like an input iterator, but you
write to its dereferenced value instead of read from it). This makes for concise reading of values
(especially strings) from a stream, which is what I have done in a number of other examples in this
chapter, and writing values to a stream, which is what [have done in Example 7-11. I know this recipe is
about printing a range to a stream, but allow me to stray from the path for a moment to explain input
stream iterators since [use them in so many examples in this chapter.

There are three key parts to the istream_iterator in Example 7-11. The first part is creating the

istream_iterator that refers to the start of the stream input. I do it like this:
istream iterator<string> start(cin);

o o ., o 1 L1 o ~ o 1 ~ ., 1 e 1 . o . o 1

Page 305

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 306

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Chapter 8. Classes

o _Introduction

o Recipe 8.1. Initializing Class Member Variables

o Recipe 8.2. Using a Function to Create Objects (a.k.a. Factory Pattern)
o Recipe 8.3. Using Constructors and Destructors to Manage Resources (or RAII)
e Recipe 8.4. Automatically Adding New Class Instances to a Container
o Recipe 8.5. Ensuring a Single Copy of a Member Variable

e Recipe 8.6. Determining an Object's Type at Runtime

e Recipe 8.7. Determining if One Object's Class Is a Subclass of Another
o Recipe 8.8. Giving Each Instance of'a Class a Unique Identifier

e Recipe 8.9. Creating a Singleton Class

o Recipe 8.10. Creating an Interface with an Abstract Base Class

e Recipe 8.11. Writing a Class Template

e Recipe 8.12. Writing a Member Function Template

e Recipe 8.13. Overloading the Increment and Decrement Operators

o Recipe 8.14. Overloading Arithmetic and Assi ent Operators for Intuitive Class Behavior

o Recipe 8.15. Calling a Superclass Virtual Function

e prcy NEXT

Please register to remove this banner.

Page 307

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Page 308

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Introduction

This chapter contains solutions to common problems related to working with C++ classes. The recipes
are mostly independent, but they are organized into two parts, which each make up about half the
chapter. The first half of the chapter contains solutions to common problems you may experience when
constructing objects of a class, such as using a function to create objects (which is often called a Factory
pattern) or using constructors and destructors to manage resources. The second half contains solutions to
problems post-construction, such as determining an object's type at runtime, and miscellaneous
implementation techniques, such as how to create an interface with an abstract base class.

Classes are, of course, the central feature of C++ that supports object-oriented programming, and there
are lots of different things you can do with classes. This chapter does not contain recipes that explain the
basics of classes: virtual functions (polymorphism), inheritance, and encapsulation. I assume you are
already familiar with these general object-oriented design principles, whether it's with C++ or another
language such as Java or Smalltalk. Rather, the purpose of this chapter is to provide recipes for some of
the mechanical difficulties you may run into when implementing object-oriented designs with C++.

Object-oriented design and the related design patterns is a huge subject, and the literature on the subject
is vast and comprehensive. [mention only a few design patterns by name in this chapter, and they are the
ones for which C++ facilities provide an elegant or perhaps not-so-obvious solution. If you are unfamiliar
with the concept of design patterns, I recommend you read Design Patterns by Gamma, et al (Addison
Wesley), because it is a useful thing to know in software engineering; however, it is not a prerequisite for
this chapter.

e prcy NEXT

ABC Amber CHM Converter Trial version

http:/ f'www. processtext.com/abcchm.html

Page 309

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 310

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 8.1. Initializing Class Member Variables
Problem

You need to initialize member variables that are native types, pointers, or references.

Solution

Use an initializer list to set the initial values for member variables. Example 8-1 shows how you can do
this for native types, pointers, and references.

Example 8-1. Initializing class members
#include <string>

using namespace std;

class Foo {
public:

Foo() : counter (0), str (NULL) {}

Foo (int ¢, string* p)

counter (c), str (p) {1}

private:

int counter ;

string* str ;

b
int main() {

string s = "bar";
Foo (2, &s);

Discussion

You should always initialize native variables, especially if they are class member variables. Class
variables, on the other hand, should have a constructor defined that will initialize its state properly, so you
do not always have to initialize them. Leaving a native variable in an uninitialized state, where it contains
garbage, is asking for trouble. But there are a few different ways to do this in C++, which is what this
recipe discusses.

The simplest things to initialize are native types. ints, chars, pointers, and so on are easy to deal with.

Consider a simple class and its default constructor:
class Foo {

public:

Foo() : counter (0), str (NULL) {}

Foo(int ¢, string* p)

counter (c), str (p) {1}

private:

int counter ;

string* str ;

bi

Use an initializer list in the constructor to initialize member variables, and avoid doing so in the body of
the constructor. This leaves the body of the constructor for any logic that must occur at construction, and
makes the member variables' initialization easy to locate. A minor benefit over just assigning member
variables in the constructor body, to be sure, but the benefits of using an initializer list becomes more

apparent when you have class or reference member variables, or when you are trying to deal with
aveontione effectively

Page 311

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 312

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 313

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 8.2. Using a Function to Create Objects (a.k.a.
Factory Pattern)

Problem

Instead of creating a heap object with new, you need a function (member or standalone) to do the
creation for you so that the type of the object being created is decided dynamically. This sort of behavior
is what the Abstract Factory design pattern achieves.

Solution

You have a couple of choices here. You can:

e Have the function create an instance of the object on the heap, and return a pointer to the object
(or update a pointer that was passed in with the new object's address)

e Have the function create and return a temporary object

Example 8-2 shows how to do both of these. The Session class in the example could be any class that
you don't want application code to create directly (i.e., with new), but rather you want creation managed
by some other class; in this example, the managing class is SessionFactory.

Example 8-2. Functions that create objects
#include <iostream>

class Session {};
class SessionFactory {

public:
Session Create();
Session* CreatePtr();
void Create(Session*& p);
/] ...

}i

// Return a copy of a stack object
Session SessionFactory::Create() {
Session s;
return(s) ;

}

// Return a pointer to a heap object
Session* SessionFactory::CreatePtr() {
return (new Session());

}

// Update the caller's pointer with the address
// of a new object
void SessionFactory::Create(Session*& p) {

P = new Session();

}

static SessionFactory f; // The one factory object

. . Page 314
int main() {

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 315

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 316

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 8.3. Using Constructors and Destructors to Manage
Resources (or RAII)

Problem

For a class that represents some resource, you want to use its constructor to acquire it and the
destructor to release it. This technique is often referred to as resource acquisition is initialization (RAII).

Solution

Allocate or acquire the resource in the constructor, and free or release the resource in the destructor.
This reduces the amount of code a user of the class must write to deal with exceptions. See Example 8-3
for a simple illustration of this technique.

Example 8-3. Using constructors and destructors
#include <iostream>
#include <string>

using namespace std;

class Socket {
public:
Socket (const string& hostname) {}

b

class HttpRequest {
public:
HttpRequest (const string& hostname)
sock (new Socket (hostname)) {}
void send(string soapMsg) {sock << soapMsg;}
~HttpRequest () {delete sock ;}
private:
Socket* sock ;

b

void sendMyData (string soapMsg, string host) {
HttpRequest req(host);
req.send(soapMsqg) ;
// Nothing to do here, because when reqg goes out of scope
// everything is cleaned up.

}

int main() {
string s = "xml";
sendMyData (s, "www.oreilly.com");

Discussion

The guarantees made by constructors and destructors offer a nice way to let the compiler clean up after
you. Typically, you initialize an object and allocate any resources it uses in the constructor, and clean
them up in the destructor. This is normal. But programmers have a tendency to use the
create-open-use-close sequence of events, where the user of the class is required to do explicit "opening"
and "closing" of resources. A file class is a good example.

The usual argument for RAII goes something like this. I could easily have designed my HttpRequest

class in Example 8-3 to make the user do a little more work. For example: Page 317
class HttpRequest {

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 318

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 319

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 8.4. Automatically Adding New Class Instances to a
Container

Problem

You need to store all instances of a class in a single container without requiring the users of the class to
do anything special.

Solution

Include in the class a static member that is a container, such as a list, defined in <list>. Add an object's
address to the container at construction and remove it upon destruction. Example 8-4 shows how.

Example 8-4. Keeping track of objects
#include <iostream>

#include <list>

#include <algorithm>

using namespace std;

class MyClass {
protected:
int value ;
public:
static list<MyClass*> instances ;
MyClass (int wval);
~MyClass();
static void showList();

}i
list<MyClass*> MyClass::instances_;

MyClass::MyClass (int val) {
instances_.push back(this);
value = val;

MyClass::~MyClass() {
list<MyClass*>::iterator p =
find(instances_ .begin(), instances_ .end(), this);
if (p != instances_.end())
instances_.erase(p);

void MyClass::showList() {
for (list<MyClass*>::iterator p = instances .begin();
p != instances_.end(); ++p)

cout << (*p)->value << endl;

int main() {
MyClass a(l);
MyClass b (10) ;
MyClass c(100) ;

MyClass::showList ();

Example 8-4 will create output like this:
1 Page 320
10

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 321

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 322

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 8.5. Ensuring a Single Copy of a Member Variable
Problem

You have a member variable that you want only one instance of, no matter how many instances of the
class are created. This kind of member variable is generally called a static member or a class variable, as
opposed to an instance variable, which is one that is instantiated with every object of a class.

Solution

Declare the member variable with the static keyword, then initialize it in a separate source file (not the
header file where you declared it) as in Example 8-5.

Example 8-5. Using a static member variable

// Static.h

class OneStatic {

public:
int getCount() {return count;}
OneStatic();

protected:
static int count;

}i

// Static.cpp
#include "Static.h"

int OneStatic::count = 0;
OneStatic: :0OneStatic() {
count++;

}

// StaticMain.cpp
#include <iostream>
#include "static.h"

using namespace std;

int main() {
OneStatic a;
OneStatic b;
OneStatic c;

cout << a.getCount() << endl;
cout << b.getCount() << endl;
cout << c.getCount() << endl;
}
Discussion

static is C++'s way of allowing only one copy of something. If you declare a member variable static, only
one of it will ever be constructed, regardless of the number of objects of that class that are instantiated.
Similarly, if you declare a variable static in a function, it is constructed at most once and retains its value
from one function call to another. With member variables, you have to do a little extra work to make sure
member variables are allocated properly, though. This is why there are three files in Example 8-5.

First, you have to use the static keyword when you declare the variable. This is easy enough: add this
keyword in the class header in the header file Static.h:

MNrAt+FAaAa~t+FAA .

Page 323

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 324

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 325

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 8.6. Determining an Object's Type at Runtime
Problem

At runtime, you need to interrogate dynamically the type of particular class.

Solution

Use runtime type identification (commonly referred to as RTTI) to query the address of the object for
the type of object it points to. Example 8-6 shows how.

Example 8-6. Using runtime type identification
#include <iostream>
#include <typeinfo>

using namespace std;

class Base {};
class Derived : public Base {};

int main() {

Base b, bb;
Derived d;

// Use typeid to test type equality
if (typeid(b) == typeid(d)) { // No
cout << "b and d are of the same type.\n";

if (typeid(b) == typeid(bb)) { // Yes
cout << "b and bb are of the same type.\n";

if (typeid(d) == typeid(Derived)) { // Yes
cout << "d is of type Derived.\n";

Discussion

Example 8-6 shows you how to use the operator typeid to determine and compare the type of an
object. typeid takes an expression or a type and returns a reference to an object of type info or a
subclass of it (which is implementation defined). You can use what is returned to test for equality or
retrieve a string representation of the type's name. For example, you can compare the types of two

objects like this:
if (typeid(b) == typeid(d)) {

This will return true if the type info objects returned by both of these are equal. This is because typeid
returns a reference to a static object, so if you call it on two objects that are the same type, you will get
two references to the same thing, which is why the equality test returns true.

You can also use typeid with the type itself, as in:
if (typeid(d) == typeid(Derived)) {

This allows you to explicitly test for a particular type.

Probably the most common use of typeid is for debugging. To write out the name of the type, use
type_info::name, like this:

T L L e e e 1 AN Yy 11 . 1T

Page 326

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 327

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 328

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 8.7. Determining if One Object's Class Is a Subclass of
Another

Problem

You have two objects, and you need to know if their respective classes have a base class/derived class
relationship or if they are unrelated.

Solution

Use the dynamic_cast operator to attempt to downcast from one type to another. The result tells you
about the class's relationships. Example 8-7 presents some code for doing this.

Example 8-7. Determining class relationships
#include <iostream>
#include <typeinfo>

using namespace std;

class Base {
public:

virtual ~Base() {} // Make this a polymorphic class
}i

class Derived : public Base {

public:

virtual ~Derived() {}
}i
int main() {

Derived d;

// Query the type relationship
if (dynamic_ cast<Base*>(&d)) {
cout << "Derived is a subclass of Base" << endl;

}

else {
cout << "Derived is NOT a subclass of Base" << endl;

}

Discussion

Use the dynamic_cast operator to query the relationship between two types. dynamic_cast takes a
pointer or reference to a given type and tries to convert it to a pointer or reference of a derived type, i.e.,
casting down a class hierarchy. If you have a Base™* that points to a Derived object,
dynamic_cast<Base*>(&d) returns a pointer of type Derived only if d is an object of a type that's
derived from Base. If this is not possible (because Derived is not a subclass, directly or indirectly, of
Base), the cast fails and NULL is returned if you passed dynamic cast a pointer to a derived object. If it
is a reference, then the standard exception bad_cast is thrown. Also, the base class must be publicly
inherited and it must be unambiguous. The result tells you if one class is a descendant of another. Here's
what I did in Example 8-7:

if (dynamic cast<Base*>(&d)) {

This returns a non-NULL pointer because d is an object of a class that is a descendant of Base. Use this
on any pair of classes to determine their relationship. The only requirement is that the object argument is a
polymorphic type, which means that it has at least one virtual function. If it does not, it won't compile.

Page 329

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 330

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 331

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 8.8. Giving Each Instance of a Class a Unique
Identifier

Problem

You want each object of a class to have a unique identifier.

Solution

Use a static member variable to keep track of the next available identifier to use. In the constructor,
assign the next available value to the current object and increment the static member. See Example 8-8 to
get an idea of how this works.

Example 8-8. Assigning unique identifiers
#include <iostream>

class UniquelID {
protected:
static int nextID;
public:
int id;
UniqueID();
UniquelID (const UniqueIDé& origqg);
UniquelID& operator=(const UniquelID& orig);

bi
int UniquelID::nextID = 0;

UniquelID::UniqueID() {
id = ++nextID;
}

UniquelID: :UniquelID(const UniquelID& orig)
id = orig.id;

}

UniquelID& UniquelID::operator=(const UniquelID& orig) {
id = orig.id;
return (*this);

}

int main() {
UniquelD a;
std::cout << a.id << std::endl;
UniquelD b;
std::cout << b.id << std::endl;
UniquelD c;
std::cout << c.id << std::endl;

Discussion

Use a static variable to keep track of the next identifier to use. In Example 8-8, I used a static int, but
you can use anything as the unique identifier, so long as you have a function that can generate the unique
values.

In this case, the identifiers are not reused until you reach the maximum size of an int. Once you delete an
object, that object's unique value is gone until the program restarts or the identifier value maxes out and

s D = o P S, T Y T T Y Y ., Y o T T o

Page 332

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 333

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 334

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 8.9. Creating a Singleton Class
Problem

You have a class that must only ever be instantiated once, and you need to provide a way for clients to
access that class in such a way that the same, single object is returned each time. This is commonly
referred to as a singleton pattern, or a singleton class.

Solution

Create a static member that is a pointer to the current class, restrict the use of constructors to create the
class by making them private, and provide a public static member function that clients can use to access
the single, static instance. Example 8-9 demonstrates how to do this.

Example 8-9. Creating a singleton class
#include <iostream>

using namespace std;

class Singleton {

public:
// This is how clients can access the single instance
static Singleton* getlInstance();

void setValue (int val) {value = val;}
int getvValue() {return(value);}
protected:

int value ;

private:
static Singleton* inst ; // The one, single instance
Singleton() : value (0) {} // private constructor

Singleton (const Singletoné&);
Singleton& operator=(const Singletong);

b

// Define the static Singleton pointer

Singleton* Singleton::inst = NULL;
Singleton* Singleton::getInstance() {
if (inst == NULL) {
inst = new Singleton();

}

return(inst);

int main() {
Singleton* pl = Singleton::getlInstance();
pl->setvalue (10);
Singleton* p2 = Singleton::getlInstance();

cout << "Value = " << p2->getValue() << '\n';

Discussion Page 335

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 336

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 337

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 8.10. Creating an Interface with an Abstract Base

Class

Problem

You need to define an interface that subclasses will implement, but the concept that the interface defines

is just an abstraction, and is not something that should be instantiated itself.

Solution

Create an abstract class that defines the interface by declaring at least one of its functions as pure virtual.

Subclass this abstract class by clients who will use different implementations to fulfill the same interface
guarantees. Example 8-10 shows how you might define an abstract class for reading a configuration file.

Example 8-10. Using an abstract base class
#include <iostream>

#include <string>

#include <fstream>

using namespace std;
class AbstractConfigFile {

public:
virtual ~AbstractConfigFile() {}

virtual void getKey(const string& header,
const stringé& key,

string& val) const = 0;
virtual void exists(const string& header,
const stringé& key,
string& val) const = 0;
}i
class TXTConfigFile : public AbstractConfigFile {
public:
TXTConfigFile() : in (NULL) {}
TXTConfigFile (istream& in) : in_ (&in) {}
virtual ~TXTConfigFile() {}

virtual void getKey(const string& header,
const stringé& key,
string& val) const {}
virtual void exists(const string& header,
const stringé& key,
string& val) const {}

protected:
istream* in ;

b

class MyAppClass {
public:
MyAppClass() : config (NULL) ({}
~MyAppClass () {}
void setConfigObj (const AbstractConfigFile* p) {config
void myMethod();

private:

= p;}

Page 338

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 339

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 340

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 8.11. Writing a Class Template
Problem

You have a class whose members need to be different types in different situations, and using
conventional polymorphic behavior is cumbersome or redundant. In other words, as the class designer,
you want a class user to be able to choose the types of various parts of your class when he instantiates it,
rather than setting them all in the original definition of the class.

Solution

Use a class template to parameterize types that can be used to declare class members (and much more).
That is, write your class with placeholders for types; thus, leaving it to the user of the class template to
choose which types to use. See Example 8-12 for an example of a tree node that can point to any type.

Example 8-12. Writing a class template
#include <iostream>
#include <string>

using namespace std;

template<typename T>
class TreeNode {

public:
TreeNode (const T& val) : val (val), left (NULL), right (NULL) {}
~TreeNode () {

delete left ;
delete right ;

const T& getVal() const {return(val);}
void setVal (const T& val) {val = val;}
void addChild (TreeNode<T>* p) {

const T& other = p->getVal();

if (other > val)

if (right)
right ->addChild(p);
else
right = p;
else
if (left)
left ->addChild(p);
else
left = p;
}
const TreeNode<T>* getLeft() {return(left);}
const TreeNode<T>* getRight() {return(right);}
private:
T val ;

TreeNode<T>* left ;
TreeNode<T>* right ;
bi

int main() {

TreeNode<string> nodel ("frank");
TreeNode<string> node2 ("larry");

TreeNode<string> node3 ("bill"); Page 341

1. DR R Ve E T R Y 2 R e I e

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 342

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 343

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 8.12. Writing a Member Function Template
Problem

You have a single member function that needs to take a parameter that can be of any type, and you can't
or don't want to be constrained to a particular type or category of types (by using a base class pointer
parameter).

Solution

Use a member function template and declare a template parameter for the type of object the function
parameter is supposed to have. See Example 8-13 for a short example.

Example 8-13. Using a member function template
class ObjectManager
public:
template<typename T>
T* gimmeAnObject ();

template<typename T>
void gimmeAnObject (T*& p);
}i

template<typename T>
T* ObjectManager::gimmeAnObject () {
return (new T);

}

template<typename T>
void ObjectManager: :gimmeAnObject (T*& p) {
p = new T;

}

class X { /* ... */ };
class Y { /* ... */ };
int main() {

ObjectManager om;

X* pl = om.gimmeAnObject<X>(); // You have to specify the template
Y* p2 = om.gimmeAnObject<Y>(); // parameter
om.gimmeAnObject (pl); // Not here, though, since the compiler can
om.gimmeAnObject (p2); // deduce T from the arguments

}

Discussion

When talking about function or class templates, the words parameter and argument have some
ambiguity. There are two kinds of each: template and function. Template parameters are the parameters
in the angle brackets, e.g., T in Example 8-13, and function parameters are parameters in the
conventional sense.

Consider the ObjectManager class in Example 8-13. It is a simplistic version of the Factory pattern
discussed in Recipe 8.2, so I have defined the member function gimmeAnObject as something that
creates new objects that client code would use instead of calling new directly. I can do this by either
returning a pointer to a new object or by modifying a pointer passed in by the client code. Let's take a

Page 344
look at each approach.

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 345

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 346

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 8.13. Overloading the Increment and Decrement
Operators

Problem

You have a class where the familiar increment and decrement operators make sense, and you want to

overload operator++ and operator-- to make incrementing and decrementing objects of your class easy
and intuitive to users.

Solution

Overload the prefix and postfix forms of ++ and -- to do what you want. Example 8-14 shows the
conventional technique for overloading the increment and decrement operators.

Example 8-14. Overloading increment and decrement
#include <iostream>

using namespace std;

class Score {

public:
Score() : score_ (0) {}
Score(int i) : score (i) {}

Score& operator++() { // prefix
++score ;
return (*this) ;

}

const Score operator++ (int) { // postfix
Score tmp (*this);
++(*this); // Take advantage of the prefix operator
return (tmp) ;

}

Scoreé& operator--() {
--score ;
return (*this) ;

}

const Score operator--(int x) {
Score tmp (*this);
-—(*this);

return (tmp) ;
}

int getScore() const {return(score);}

private:
int score ;

b

int main() {
Score playerl (50);

playerl++;

++playerl; // score = 52

cout << "Score = " << playerl.getScore() << '\n';
(--playerl)--; // score = 50

cout << "Score = " << playerl.getScore() << '\n';

Discussion Page 347

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 348

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 349

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 8.14. Overloading Arithmetic and Assignment
Operators for Intuitive Class Behavior

Problem

You have a class for which some of C++'s unary or binary operators make sense, and you want users of
your class to be able to use them when working with objects of your class. For example, if you have a
class named Balance that contains, essentially, a floating-point value (i.e., an account balance), it would

be convenient if you could use Balance objects with some standard C++ operators, like this:
Balance checking(50.0), savings(100.0);

checking += 12.0;
Balance total = checking + savings;

Solution

Overload the operators you want to use as member functions and standalone functions to allow
arguments of various types for which the given operator makes sense, as in Example 8-15.

Example 8-15. Overloading unary and binary operators
#include <iostream>

using namespace std;

class Balance {
// These have to see private data
friend const Balance operator+(const Balance& lhs, const Balanceé& rhs);
friend const Balance operator+(double lhs, const Balanceé& rhs);
friend const Balance operator+(const Balance& lhs, double rhs);

public:
Balance() : val (0.0) {}
Balance (double val) : val (val) {}
~Balance() {}

// Unary operators
Balanceé& operator+=(const Balance& other) ({
val += other.val ;
return (*this) ;
}
Balanceé& operator+=(double other) {
val += other;
return (*this) ;

double getVal() const {return(val);}

private:
double val ;
}i

// Binary operators

const Balance operator+(const Balance& lhs, const Balanceé& rhs) {
Balance tmp(lhs.val + rhs.val);
return (tmp) ;

const Balance operator+(double lhs, const Balanceé& rhs) {
Balance tmp(lhs + rhs.val);
return (tmp) ;

Page 350

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 351

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Recipe 8.15. Calling a Superclass Virtual Function
Problem

You need to invoke a function on a superclass of a particular class, but it is overridden in subclasses, so
the usual syntax of p->method() won't give you the results you are after.

Solution

Qualify the name of the member function you want to call with the target base class; for example, if you
have two classes. (See Example 8-16.)

Example 8-16. Calling a specific version of a virtual function
#include <iostream>

using namespace std;
class Base {
public:
virtual void foo() {cout << "Base::foo()" << endl;}

b

class Derived : public Base {

public:

virtual void foo() {cout << "Derived::foo()" << endl;}
b
int main() {

Derived* p = new Derived();

p—>foo(); // Calls the derived version
p->Base::foo(); // Calls the base version

}

Discussion

Making a regular practice of overriding C++'s polymorphic facilities is not a good idea, but there are
times when you have to do it. As with so many techniques in C++, it is largely a matter of syntax. When
you want to call a specific base class's version of a virtual function, just qualify it with the name of the
class you are after, as I did in Example 8-16:

p->Base::foo();

This will call the version of foo defined for Base, and not the one defined for whatever subclass of Base p
points to.

e prcy EXT

Page 352

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

Page 353

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Chapter 9. Exceptions and Safety

o _Introduction

e Recipe 9.1. Creating an Exception Class

e Recipe 9.2. Making a Constructor Exception-Safe

e Recipe 9.3. Making an Initializer List Exception-Safe

o Recipe 9.4. Making Member Functions Exception-Safe

e Recipe 9.5. Safely Copying an Object

e prcv wExT

Please register to remove this banner.

Page 354

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Introduction

This chapter contains recipes for using C++'s exception-handling features. C++ has strong support for
exception handling, and by employing a few techniques you can write code that handles exceptional
circumstances effectively and is easy to debug.

The first recipe describes C++'s semantics for throwing and catching exceptions, then it explains how to
write a class to represent exceptions. This is a good starting point if you have little or no experience with
exceptions. It also describes the standard exception classes that are defined in <stdexcept> and
<exception>,

The rest of the recipes illustrate techniques for using exceptions optimally, and they define several key
terms along the way. Just throwing an exception when something unexpected happens, or catching an
exception only to print an error message and abort does not make for good software. To use C++'s
exception-handling facilities effectively, you have to write code that doesn't leak resources if an exception
is thrown, and that otherwise has well-defined behavior when an exception is thrown. These are known
as the basic and strong exception-safety guarantees. I describe techniques you can use that allow you to
make these guarantees for constructors and various member functions.

e prcy EXT

Please register to remove this banner.

Page 355

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 356

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 9.1. Creating an Exception Class
Problem

You want to create your own exception class for tHRowing and catching,
Solution

You can throw or catch any C++ type that lives up to some simple requirements, namely that it has a
valid copy constructor and destructor. Exceptions are a complicated subject though, so there are a

number of things to consider when designing a class to represent exceptional circumstances. Example 9-1

shows what a simple exception class might look like.

Example 9-1. A simple exception class
#include <iostream>
#include <string>

using namespace std;

class Exception {

public:
Exception(const string& msg) : msg_(msg) {}
~Exception() {}
string getMessage() const {return(msg_);}
private:

string msg_;

}i

void f£() {
throw (Exception ("Mr. Sulu"));
}

int main() {

try {
£)
}
catch (Exceptioné& e) {
cout << "You threw an exception: " << e.getMessage() << endl;

}

Discussion

C++ supports exceptions with three keywords: try, catch, and tHRow. The syntax looks like this:
try {

// Something that may call "throw", e.g.

throw (Exception ("Uh-oh")) ;

}
catch (Exception& e) {
// Do something useful with e

}

An exception in C++ (Java and C# are similar) is a way to put a message in a bottle at some point in a
program, abandon ship, and hope that someone is looking for your message somewhere down the call
stack. It is an alternative to other, simpler techniques, such as returning an error code or message. The
semantics of using exceptions (e.g., "trying" something, "throwing" an exception, and subsequently

Page 357

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 358

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 359

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 9.2. Making a Constructor Exception-Safe
Problem

Your constructor needs to uphold basic and strong exception-safety guarantees. See the discussion that
follows for the definitions of "basic" and "strong" guarantees.

Solution

Use try and catch in the constructor to clean up properly if an exception is thrown during construction.
Example 9-2 presents examples of the simple Device and Broker classes. Broker constructs two Device
objects on the heap, but needs to be able to properly clean them up if an exception is thrown during
construction.

Example 9-2. An exception-safe constructor
#include <iostream>
#include <stdexcept>

using namespace std;

class Device {
public:
Device (int devno) {
if (devno == 2)
throw runtime error ("Big problem");
}
~Device() {}

}i
class Broker {
public:

Broker (int devnol, int devno?2)
devl (NULL), dev2 (NULL) {

try {
devl = new Device(devnol); // Enclose the creation of heap
dev2 = new Device(devno2); // objects in a try block...

}

catch (...) {
delete devl ; // ...clean up and rethrow if
throw; // something goes wrong.

}

}
~Broker () {

delete devl ;
delete devZ ;
}

private:
Broker ();
Device* devl ;
Device* dev2 ;

b
int main() {

try {
Broker b (1, 2);
}
catch (exception& e) {
~oarr << "Tw~arntaiAane " e A what () << aAanAd] .

Page 360

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 361

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 362

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 9.3. Making an Initializer List Exception-Safe

Problem

You have to initialize your data members in the constructor's initializer list, and, therefore, cannot use the

approach described in Recipe 9.2.

Solution

Use a special syntax for try and catch that catches exceptions thrown in the initializer list. Example 9-3

shows how.

Example 9-3. Handling exceptions in an initializer
#include <iostream>
#include <stdexcept>

using namespace std;

// Some device
class Device {
public:

Device (int devno) {

if (devno == 2)
throw runtime error ("Big problem");
}

~Device() {}
private:

Device();
}i

class Broker {

public:
Broker (int devnol, int devno2)
try : devl (Device (devnol)), // Create these in the initializer
dev2 (Device (devno2)) {} // list.
catch (...) {
throw; // Log the message or translate the error here (see
// the discussion)
}
~Broker() {}
private:
Broker ();

Device devl ;
Device devZ ;
i

int main() {

try |
Broker b (1, 2);
}
catch (exception& e) {
cerr << "Exception: " << e.what() << endl;
}

Discussion

Page 363

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 364

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 365

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 9.4. Making Member Functions Exception-Safe
Problem

You are writing a member function and you need it to uphold the basic and strong exception-safety
guarantees, namely that it won't leak resources and it won't leave the object in an invalid state if an
exception is thrown.

Solution

Be aware of what operations can throw exceptions and do them first, usually in a try/catch block. Once
the code that can throw exceptions is done executing, then you can update the object state. Example 9-4
offers one way to make a member function exception-safe.

Example 9-4. An exception-safe member function
class Message {

public:
Message (int bufSize = DEFAULT BUF SIZE)
bufSize (bufSize),
initBufSize (bufSize),
msgSize (0),
buf (NULL) {
buf = new char[bufSize];

~Message () {
delete[] buf ;
}

// Append character data
void appendData (int len, const char* data) {
if (msgSize +len > MAX SIZE) {
throw out of range("Data size exceeds maximum size.");
}

if (msgSize +len > bufSize) {

int newBufSize = bufSize ;
while ((newBufSize *= 2) < msgSize +len);

char* p = new char[newBufSize]; // Allocate memory
// for new buffer

copy (buf , buf +msgSize , p); // Copy old data
copy (data, datatlen, p+msgSize); // Copy new data

msgSize += len;

bufSize = newBufSize;
delete[] buf ; // Get rid of old buffer and point to new
buf = p;

}

else {

copy (data, data+len, buf +msgSize);
msgSize += len;

// Copy the data out to the caller's buffer
int getData (int maxLen, char* data) {

A F (mavTen < mae~nQaioa Y [

Page 366

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 367

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 368

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 9.5. Safely Copying an Object

Problem

You need the basic class copy operationscopy construction and assignmentto be exception-safe.
Solution

Employ the tactics discussed in Recipe 9.4 by doing everything that might throw first, then changing the
object state with operations that can't throw only after the hazardous work is complete. Example 9-6
presents the Message class again, this time with the assignment operator and copy constructor defined.

Example 9-6. Exception-safe assignment and copy construction
#include <iostream>
#include <string>

const static int DEFAULT BUF SIZE = 3;
const static int MAX SIZE 4096;

class Message {

public:
Message (int bufSize = DEFAULT BUF SIZE)
bufsize (bufSize),
initBufSize (bufSize),
msgSize (0),

key_(" ") {
buf = new char[bufSize]; // Note: now this is in the body
}
~Message () {

delete[] buf ;

// Exception-safe copy ctor
Message (const Message& orig)
bufSize (orig.bufSize),
initBufSize (orig.initBufSize),
msgSize (orig.msgSize),
key (orig.key) { // This can throw...

buf = new char[orig.bufSize]; // ...so can this

cop?(orig.buf_, orig.buf +msgSize , buf); // This can't

// Exception-safe assignment, using the copy ctor
Message& operator=(const Messageé& rhs) {

Message tmp (rhs); // Copy construct a temporary
swapInternals (tmp); // Swap members with it
return (*this); // When we leave, tmp is destroyed, taking

// the original data with it

const char* data() {
return (buf);

private:
void swapInternals (Message& msg) {
// Since key 1is not a built-in data type it can throw,

Page 369

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 370

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Chapter 10. Streams and Files

e _Introduction

e Recipe 10.1. Lining Up Text Output

e Recipe 10.2. Formatting Floating-Point Output

e Recipe 10.3. Writing Your Own Stream Manipulators
e Recipe 10.4. Making a Class Writable to a Stream

e Recipe 10.5. Making a Class Readable from a Stream
e Recipe 10.6. Getting Information About a File

e Recipe 10.7. Copying a File

e Recipe 10.8. Deleting or Renaming a File

e Recipe 10.9. Creating a Temporary Filename and File

e Recipe 10.10. Creating a Directory

e Recipe 10.11. Removing a Directory

e Recipe 10.12. Reading the Contents of a Directory

e Recipe 10.13. Extracting a File Extension from a String

e Recipe 10.14. Extracting a Filename from a Full Path

e Recipe 10.15. Extracting a Path from a Full Path and Filename
e Recipe 10.16. Replacing a File Extension

e Recipe 10.17. Combining Two Paths into a Single Path

e prcv NExT

Page 371

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

Page 372

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Introduction

Streams are one of the most powerful (and complicated) components of the C++ standard library. Using
them for plain, unformatted input and output is generally straightforward, but changing the format to suit
your needs with standard manipulators, or writing your own manipulators, is not. Therefore, the first few
recipes describe different ways to format stream output. The two after that describe how to write objects
of a class to a stream or read them from one.

Then the recipes shift from reading and writing file content to operating on the files themselves (and
directories). If your program uses files, especially if it's a daemon or server-side process, you will
probably create files and directories, clean them up, rename them, and so on. There are a number of
recipes that explain how to do these unglamorous, but necessary, tasks in C++.

The last third of the recipes demonstrate how to manipulate file and pathnames themselves using many of
the standard string member functions. Standard strings contain an abundance of functions for inspecting
and manipulating their contents, and if you have to parse path and filenames they come in handy. If what
you need is not discussed in these recipes, take a look at Chapter 7, toowhat you're after might be
described there.

File manipulation requires direct interaction with the operating system (OS), and there are often subtle
differences (and occasionally glaring incompatibilities) between OSs. Many of the typical file and
directory manipulation needs are part of the standard C system calls, and work the same or similarly on
different systems. Where there are differences between OSs' versions of libraries, I note it in the recipes.

As I have discussed in previous chapters, Boost is an open source project that has generated a number
of high-quality, portable libraries. But since this is a book about C++ and not the Boost project, I have
preferred standard C++ solutions whenever possible. In many cases, however, (most notably Recipe
10.12) there isn't a Standard C++ solution, so I have used the Boost Filesystem library written by Beman
Dawes, which provides a portable filesystem interface, to give a portable solution. Take a look at the
Boost Filesystem library if you have to do portable filesystem interactionyou will save yourself lots of time
and effort. For more information on the Boost project, see www.boost.org.

e prcy EXT

ABC Amber CHM Converter Trial version

http:/ f'www. processtext.com,/abcchm.html

Page 373

http://www.boost.org
http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 374

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 10.1. Lining Up Text Qutput
Problem

You need to line up your text output vertically. For example, if you are exporting tabular data, you may
want it to look like this:

Jim Willcox Mesa AZ
Bill Johnson San Mateo CA
Robert Robertson Fort Collins CO

You will probably also want to be able to right- or left-justify the text.
Solution

Use ostream or wostream, for narrow or wide characters, defined in <ostream>, and the standard
stream manipulators to set the field width and justify the text. Example 10-1 shows how.

Example 10-1. Lining up text output
#include <iostream>

#include <iomanip>

#include <string>

using namespace std;
int main() {
ios _base::fmtflags flags = cout.flags();

string first, last, citystate;
int width = 20;

first = "Richard";

last = "Stevens";

citystate = "Tucson, AZ";

cout << left // Left-justify in each field
<< setw(width) << first // Then, repeatedly set the width
<< setw(width) << last // and write some data

<< setw(width) << citystate << endl;

cout.flags(flags);

The output looks like this:

Richard Stevens Tucson, AZ
Discussion

A manipulator is a function that operates on a stream. Manipulators are applied to a stream with
operator<<. The stream's format (input or output) is controlled by a set of flags and settings on the
ultimate base stream class, i0s_base. Manipulators exist to provide convenient shorthand for adjusting
these flags and settings without having to explicitly set them via setf or flags, which is cumbersome to
write and ugly to read. The best way to format stream output is to use manipulators.

Example 10-1 uses two manipulators to line up text output into columns. The manipulator setw sets the
field width, and left left-justifies the value within that field (the counterpart to left is, not surprisingly, right).
A "field" is just another way of saying that you want the output to be padded on one side or the other to
make sure that the value you write is the only thing printed in that field. If, as in Example 10-1, you

1A vt it a xraliva 4lhmnn cnt 4 lhhma €A1 vt A4 1A vt 4 ten v v 71t vt 4 4 A cdeemnmrtvn vv 2 At vva4dh 41 A vt

Page 375

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 376

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 377

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 10.2. Formatting Floating-Point Output
Problem

You need to present floating-point output in a well-defined format, either for the sake of precision
(scientific versus fixed-point notation) or simply to line up decimal points vertically for easier reading.

Solution

Use the standard manipulators provided in <iomanip> and <ios> to control the format of floating-point
values that are written to the stream. There are too many combinations of ways to cover here, but
Example 10-3 offers a few different ways to display the value of pi.

Example 10-3. Formatting pi
#include <iostream>
#include <iomanip>
#include <string>

using namespace std;
int main() {

ios base::fmtflags flags = // Save old flags
cout.flags();

double pi = 3.14285714;
cout << "pi = " << setprecision(5) // Normal (default) mode; only

<< pi << '\n'; // show 5 digits, including both
// sides of decimal point.

cout << "pi = " << fixed // Fixed-point mode;
<< showpos // show a "+" for positive nums,
<< setprecision (3) // show 3 digits to the *right*
<< pi << '\n'; // of the decimal.

cout << "pi = " << scientific // Scientific mode;
<< noshowpos // don't show plus sign anymore

<< pi * 1000 << '\n';
cout.flags(flags); // Set the flags to the way they were
This will produce the following output:
pi = 3.1429

pi = +3.143
pi = 3.143e+003

Discussion
Manipulators that specifically manipulate floating-point output divide into two categories. There are those

that set the format, which, for the purposes of this recipe, set the general appearance of floating-point and
integer values, and there are those that fine-tune the display of each format. The formats are as follows:

Normal (the default)

In this format, the number of digits displayed is fixed (with a default of six) and the decimal is displayed

Page 378

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 379

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 380

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 10.3. Writing Your Own Stream Manipulators
Problem

You need a stream manipulator that does something the standard ones can't. Or, you want to have a
single manipulator set several flags on the stream instead of calling a set of manipulators each time you
want a particular format.

Solution

To write a manipulator that doesn't take an argument (a la left), write a function that takes an ios_base
parameter and sets stream flags on it. If you need a manipulator that takes an argument, see the
discussion a little later. Example 10-4 shows how to write a manipulator that doesn't take an argument.

Example 10-4. A simple stream manipulator
#include <iostream>

#include <iomanip>

#include <string>

using namespace std;

// make floating-point output look normal

inline ios base& floatnormal (ios base& io) {
io.setf (0, ios base::floatfield);
return(io);

}

int main() {

ios base::fmtflags flags = // Save old flags
cout.flags();

double pi = 22.0/7.0;

cout << "pi = " << scientific // Scientific mode
<< pi * 1000 << '\n';

cout << "pi = " << floatnormal
<< pi << '"\n';

cout.flags(flags);

Discussion

There are two kinds of manipulators: those that accept arguments and those that don't. Manipulators that
take no arguments are easy to write. All you have to do is write a function that accepts a stream
parameter, does something to it (sets a flag or changes a setting), and returns it. Writing a manipulator
that takes one or more arguments is more complicated because you need to create additional classes and
functions that operate behind the scenes. Since argument-less manipulators are simple, let's start with
those.

After reading Recipe 10.1, you may have realized that there are three floating-point formats and only
two manipulators for choosing the format. The default format doesn't have a manipulator; you have to set

a flag on the stream to get back to the default format, like this:
myiostr.setf (0, ios base::floatfield);

But for consistency and convenience, you may want to add your own manipulator that does the same Page 381

ltcn~r Tohat'a xv et HDomsmidas 10O 141 AAance TTIAa flAactn ~svv] savctrtsntilat e it 4 A Asnsnsotnte ot dremncsan 1A~ 44

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 382

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 383

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 10.4. Making a Class Writable to a Stream

Problem

You have to write a class to an output stream, either for human readability or persistent storage, i.e.,

serialization.

Solution

Overload operator<< to write the appropriate data members to the stream. Example 10-6 shows how.

Example 10-6. Writing objects to a stream
#include <iostream>
#include <string>

using namespace std;
class Employer {

friend ostreamé& operator<<
(ostream& out,

public:
Employer() {}
~Employer() {}

void setName (const stringé& name)
private:
string name ;

b

class Employee {
friend ostreamé& operator<<
(ostream& out, const Employee& obj)

const Employeré& empr);

// This has to be a friend
// so it can access non-
// public members

{name = name;}

’

public:
Employee () empr (NULL) ({}
~Employee() {if (empr) delete empr ;}
void setFirstName (const stringé& name) {firstName = name;}
void setLastName (const string& name) {lastName = name;}
void setEmployer (Employer& empr) {empr = &empr;}
const Employer* getEmployer() const {return(empr);}

private:
string firstName ;
string lastName ;
Employer* empr ;

b

// Allow us to send Employer objects to
ostreamé& operator<<(ostreamé& out, const

out << empr.name << endl;

return (out) ;

}

// Allow us to send Employee objects to
ostreamé& operator<<(ostreamé& out, const

out << emp.firstName << endl;
out << emp.lastName << endl;
if (emp.empr)

an ostream...
Employer& empr) {

an ostream...
Employee& emp) {

Page 384

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 385

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 386

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 10.5. Making a Class Readable from a Stream
Problem

You have written an object of some class to a stream, and now you need to read that data from the
stream and use it to initialize an object of the same class.

Solution

Use operator>> to read data from the stream into your class to populate its data members, which is
simply the reverse of what Example 10-6 does. See Example 10-7 for an implementation.

Example 10-7. Reading data into an object from a stream
#include <iostream>

#include <istream>

#include <fstream>

#include <string>

using namespace std;

class Employee {

friend ostream& operator<< // These have to be friends
(ostreamé& out, const Employee& emp); // so they can access
friend istreamé& operator>> // nonpublic members

(istream& in, Employee& emp) ;

public:
Employee() {}
~Employee() {}
void setFirstName (const string& name) {firstName = name;}
void setLastName (const stringé& name) {lastName = name;}
private:

string firstName ;
string lastName ;
}i

// Send an Employee object to an ostream...
ostreamé& operator<<(ostream& out, const Employee& emp) {

out << emp.firstName << endl;
out << emp.lastName << endl;

return (out) ;
// Read an Employee object from a stream
istreamé& operator>>(istream& in, Employee& emp) {

in >> emp.firstName ;
in >> emp.lastName ;

return (in) ;

int main() {

Employee emp;
string first = "William";
string last = "Shatner";

Page 387

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 388

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 389

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 10.6. Getting Information About a File

Problem

You want information about a file, such as its size, device, last modification time, etc.

Solution

Use the C system call stat in <sys/stat.h>. See Example 10-8 for a typical use of stat that prints out a
few file attributes.

Example 10-8. Obtaining file information
#include <iostream>

#include <ctime>

#include <sys/types.h>

#include <sys/stat.h>

#include <cerrno>

#include <cstring>

int main(int argc, char** argv)

{

struct stat fileInfo;

if (argc < 2) {
std::cout << "Usage: fileinfo <file name>\n";
return (EXIT FAILURE) ;

if (stat(argv[l], &filelInfo) != 0) { // Use stat() to get the info
std::cerr << "Error: " << strerror (errno) << '\n';
return (EXIT_FAI LURE) ;

1]

std::cout << "Type: A

if ((fileInfo.st mode & S IFMT) == S IFDIR) { // From sys/types.h
std::cout << "Directory\n";
} else {

std::cout << "File\n";

}

std::cout << "Size "L
fileInfo.st size << '\n'; // Size in bytes
std::cout << "Device "L
(char) (fileInfo.st dev + 'A') << '\n'; // Device number
std::cout << "Created A S
std::ctime(&fileInfo.st ctime); // Creation time
std::cout << "Modified : "L
std::ctime(&fileInfo.st mtime); // Last mod time
}
Discussion

The C++ standard library supports manipulation of file content with streams, but it has no built-in
support for reading or altering the metadata the OS maintains about a file, such as its size, ownership,
permissions, various timestamps, and other information. However, standard C contains a number of
standard system call libraries that you can use to get this kind of information about a file, and that's what

Example 10-8 uses.

There are two parts to obtaining file information. First, there is a struct named stat that contains members

Page 390

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 391

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 392

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 10.7. Copying a File
Problem

You need to copy one file to another in a portable manner, i.e., without using OS-specific APIs.

Solution

Use C+ file streams in <fstream> to copy data from one stream to another. Example 10-9 gives an
example of a buffered stream copy.

Example 10-9. Copying a file
#include <iostream>

#include <fstream>

const static int BUF SIZE = 4096;

using std::ios_base;

int main(int argc, char** argv) {

std::ifstream in(argv[1l],

ios base::in | ios base::binary); // Use binary mode so we can
std::ofstream out (argv[2], // handle all kinds of file
ios base::out | ios base::binary); // content.

// Make sure the streams opened okay...

char buf [BUF SIZE];

do {
in.read(&buf[0], BUF SIZE); // Read at most n bytes into
out.write (&buf[0], in.gcount()); // buf, then write the buf to
} while (in.gcount() > 0); // the output.

// Check streams for problems...

in.close();
out.close();

Discussion

Copying a file may appear to be a simple matter of reading from one stream and writing to another. But
the C++ streams library is large, and there are a number of different ways to do the reading and the
writing, so you should know a little about the library to avoid costly performance mistakes.

Example 10-9 runs fast because it buffers input and output. The read and write functions operate on
entire buffers at a timeinstead of a character-at-a-time copy loopby reading from the input stream to the
buffer and writing from the buffer to the output stream in chunks. They also do not do any kind of
formatting on the data like the left- and right-shift operators, which keeps things fast. Additionally, since
the streams are in binary mode, EOF characters can be read and written without incident. Depending on
your hardware, OS, and so on, you will get different results for different bufter sizes. Experiment to find
the best parameters for your system.

But there's more to it than this. All C++ streams already buffer data when reading or writing, so Example
10-9 is actually doing double buffering. The input stream has its own internal stream buffer that holds Page 393
charactere that have heen read from the conirece biit noft evtracted with read onerator<< oefe or anv

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 394

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 395

http://www.processtext.com/abcchm.html

Recipe 10.8. Deleting or Renaming a File
Problem

You have to remove or rename a file, and you want to do it portably, i.e., without using OS-specific
APIs.

Solution

The Standard C functions remove and rename, in <cstdio>, will do this. See Example 10-11 for a brief
demonstration of them.

Example 10-11. Removing a file
#include <iostream>
#include <cstdio>

#include <cerrno>

using namespace std;
int main(int argc, char** argv) {

if (argc !'= 2) {
cerr << "You must supply a file name to remove." << endl;
return (EXIT FAILURE) ;

if (remove(argv([l]) == -1) { // remove() returns -1 on error
cerr << "Error: " << strerror (errno) << endl;
return (EXIT FAILURE) ;

}

else {

cout << "File '" << argv[l] << "' removed." << endl;

ssion

These system calls are easy to use: just call one or the other with the filename you want to delete or
rename. If something goes wrong, the return value is non-zero and errno is set to the appropriate error
number. You can use strerror or perror (both declared in <cstdio>) to print out the
implementation-defined error message.

To rename a file, you can replace the remove call in Example 10-11 with the following code:
if (rename (argv[l], argv[2])) {
cerr << "Error: " << strerror (errno) << endl;
return (EXIT FAILURE) ;
} TheslibrarustlstdioO-ldeths setbility You have to rTc(To rena.this. See) Tj

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 397

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 398

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 10.9. Creating a Temporary Filename and File
Problem

You have to store some stuff on disk temporarily, and you don't want to have to write a routine that
generates a unique name yourself.

Solution

Use either the tmpfile or tmpnam functions, declared in <cstdio>. tmpfile returns a FILE* that is already
opened for writing, and tmpnam generates a unique filename that you can open yourself. Example 10-13
shows how to use tmpfile.

Example 10-13. Creating a temporary file
#include <iostream>
#include <cstdio>

int main() {

FILE* pf = NULL;
char buf[256];

pf = tmpfile(); // Create and open a temp file

if (pf) |
fputs ("This is a temp file", pf); // Write some data to it
}

fseek (pf, 5, SEEK SET); // Reset the file position
fgets (buf, 255, pf); // Read a string from it
fclose (pf) ;

std::cout << buf << '\n';

Discussion

There are two ways to create a temporary file; Example 10-13 shows the first way. The function tmpfile
is declared in <cstdio>, takes no parameters, and returns a FILE* if successful, NULL if not. The FILE*
is the same type you can use with the C input/output functions fread, fwrite, fgets, fputs, etc. tmpfile
opens the temporary file in "wb+" mode, which means you can write to it or read from it in binary mode
(i.e., the characters are not interpreted as they are read). When your program terminates normally, the
temporary file created by tmpfile is automatically deleted.

This may or may not work for you depending on your requirements. You will notice that tmpfile does not
give you a filenamehow do you pass the file to another program? You can't; you'll have to use a similar
function instead: tmpnam.

tmpnam doesn't actually create a temporary file, it just creates a unique file name that you can use to go
open a file using that name yourself. tmpnam takes a single char* parameter and returns a char*. You can
pass in a pointer to a char buffer (that has to be at least as big as the macro L._tmpnam, also defined in
<cstdio>), where tmpnam will copy the temporary name, and it will return a pointer to the same buffer. If
you pass in NULL, tmpfile will return a pointer to a static buffer that contains the filename, which means
that subsequent calls to tmpnam will overwrite it. (See Example 10-14.)

Example 10-14. Creating a temporary filename

B T L ER, [. S T

Page 399

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 400

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 401

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 10.10. Creating a Directory

Problem

You have to create a directory, and you want to do it portably, i.e., without using OS-specific APIs.
Solution

On most platforms, you will be able to use the mkdir system call that is shipped with most compilers as
part of the C headers. It takes on different forms in different OSs, but regardless, you can use it to create
a new directory. There is no standard C++, portable way to create a directory. Check out Example
10-15 to see how.

Example 10-15. Creating a directory
#include <iostream>
#include <direct.h>

int main(int argc, char** argv) {

if (argc < 2) {
std::cerr << "Usage: " << argv[0] << " [new dir name]\n";
return(EXIT_FAILURE);

if (mkdir(argv[l]) == -1) { // Create the directory
std::cerr << "Error: " << strerror (errno);
return(EXIT_FAILURE);

Discussion

The system call for creating directories differs somewhat from one OS to another, but don't let that stop
you from using it anyway. Variations of mkdir are supported on most systems, so creating a directory is
just a matter of knowing which header to include and what the function's signature looks like.

Example 10-15 works on Windows, but not Unix. On Windows, mkdir is declared in <direct.h>. It
takes one parameter (the directory name), returns -1 if there is an error, and sets errno to the
corresponding error number. You can get the implementation-defined error text by calling strerror or
perror.

On Unix, mkdir is declared in <sys/stat.h>, and its signature is slightly different. The error semantics are
just like Windows, but there is a second parameter that specifies the permissions to apply to the new
directory. Instead, you must specify the permissions using the traditional chmod format (see the chmod
man page for specifics), e.g., 0777 means owner, group, and others all have read, write, and execute

permissions. Thus, you might call it like this on Unix:
#include <iostream>

#include <sys/types.h>

#include <sys/stat.h>

int main(int argc, char** argv) ({
if (argc < 2) {

std::cerr << "Usage: " << argv[0] << " [new dir name]\n";
return (EXIT FAILURE) ;

N 1o 1t e e C1 Y Ba Ew B Y o “a \ r Y R T T TR, [SR

Page 402

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 403

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 404

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 10.11. Removing a Directory

Problem

You need to remove a directory, and you want to do it portably, i.e., without using OS-specific APIs.
Solution

On most platforms, you will be able to use the rmdir system call that is shipped with most compilers as
part of the C headers. There is no standard C++, portable way to remove a directory. rmdir takes on

different forms in different OSs, but regardless, you can use it to remove a directory. See Example 10-17

for a short program that removes a directory.

Example 10-17. Removing a directory
#include <iostream>
#include <direct.h>

using namespace std;
int main(int argc, char** argv) {

if (argc < 2) {
cerr << "Usage: " << argv[0] << " [dir name]" << endl;
return (EXI T FAT LURE) ;

if (rmdir(argv[l]) == -1) { // Remove the directory
cerr << "Error: " << strerror(errno) << endl;;
return (EXI T FAT LURE) ;

Discussion

The signature of rmdir is the same on most OSs, but the header file where it is declared is not. On
Windows, it is declared in <direct.h>, and on Unix, it is declared in <unistd.h>. It takes one parameter
(the directory name), returns -1 if there is an error, and sets erro to the corresponding error number.
You can get the implementation-defined error text by calling strerror or perror.

If the target directory is not empty rmdir will return an error. To list the contents of a directory, to
enumerate them for deletion, etc., see Recipe 10.12.

If you want portability, and don't want to write a bunch of #ifdefs around the various OS-specific
directory functions, you should consider using the Boost Filesystem library. The Boost Filesystem library
uses the concept of a path to refer to a directory or file, and paths can be removed with a single function,
remove.

The function removeRecurse in Example 10-18 recursively removes a directory and all of its contents.
The most important part is the remove function (which is boost::filesystem::remove, not a standard library
function). It takes a path argument, and removes it if it is a file or an empty directory, but it doesn't
remove a directory that contains files.

Example 10-18. Removing a directory with Boost
#include <iostream>

#include <string>

#include <cstdlib>

L o T e~ it €2 T o~ vt o~ S o mm A TR e S

Page 405

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 406

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 407

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 10.12. Reading the Contents of a Directory
Problem

You need to read the contents of a directory, most likely to do something to each file or subdirectory
that's in it.

Solution

To write something portable, use the Boost Filesystem library's classes and functions. It provides a
number of handy utilities for manipulating files, such as a portable path representation, directory iterators,
and numerous functions for renaming, deleting, and copying files, and so on. Example 10-19
demonstrates how to use a few of these facilities.

Example 10-19. Reading a directory

#include <iostream>

#include <boost/filesystem/operations.hpp>
#include <boost/filesystem/fstream.hpp>

using namespace boost::filesystem;
int main(int argc, char** argv) {

if (argc < 2) {
std::cerr << "Usage: " << argv[0] << " [dir name]\n";
return (EXIT FAILURE) ;

path fullPath = // Create the full, absolute path name
system complete (path(argv([l], native));

if (!exists(fullPath)) {
std::cerr << "Error: the directory " << fullPath.string()
<< " does not exist.\n";
return (EXIT FAILURE) ;

if (!is_directory(fullPath)) {
std::cout << fullPath.string() << " is not a directory!\n";
return (EXIT SUCCESS) ;

}

directory iterator end;
for (directory iterator it (fullPath);

it != end; ++it) { // Iterate through each
// element in the dir,
std::cout << it->leaf(); // almost as you would
if (is directory(*it)) // an STL container
std::cout << " (dir)";

std::cout << '\n';

return (EXIT SUCCESS) ;

Discussion

Like creating or deleting directories (see Recipe 10.10 and Recipe 10.11), there is no standard,
portable way to read the contents of a directory. To make your C++ life easier, the Filesystem library in

R T o Y Y L, Y o Y T T D Y Y T ok D, B B T

Page 408

http://www.boost.com
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 409

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 410

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 10.13. Extracting a File Extension from a String
Problem

Given a filename or a complete path, you need to retrieve the file extension, which is the part of a
filename that follows the last period. For example, in the filenames src.cpp, Window.class, and
Resume.doc, the file extensions are .cpp, .class, and .doc.

Solution

Convert the file and/or pathname to a string, use the rfind member function to locate the last period, and
return everything after that. Example 10-20 shows how to do this.

Example 10-20. Getting a file extension from a filename
#include <iostream>
#include <string>

using std::string;

string getFileExt (const stringé& s) {

size t i = s.rfind('.', s.length());

if (i != string::npos) {
return(s.substr(i+l, s.length() - 1));

}

return("");

}
int main(int argc, char** argv) {
string path = argv[1l];

std::cout << "The extension is \"" << getFileExt (path) << "\"\n";

Discussion

To get an extension from a filename, you just need to find out where the last dot "." is and take
everything to the right of that. The standard string class, defined in <string> contains functions for doing
both of these things: rfind and substr.

rfind will search backward for whatever you sent it (a char in this case) as the first argument, starting at
the index specified by the second argument, and return the index where it was found. If the pattern wasn't
found, rfind will return string::npos. substr also takes two arguments. The first is the index of the first
element to copy, and the second is the number of characters to copy.

The standard string class contains a number of member functions for finding things. See Recipe 4.9 for a
longer discussion of string searching.

See Also

Recipe 4.9 and Recipe 10.12

Page 411

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 412

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 413

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 10.14. Extracting a Filename from a Full Path

Problem

You have the full path of a filename, e.g., d: \apps\src\foo.c, and you need to get the filename, foo.c.

Solution

Employ the same technique as the previous recipe and use rfind and substr to find and get what you
want from the full pathname. Example 10-21 shows how.

Example 10-21. Extracting a filename from a path
#include <iostream>

#include <string>

using std::string;

string getFileName (const string& s) {

char sep = '/"';

#ifdef WIN32

sep = '"\\';
#endif
size t i = s.rfind(sep, s.length());
if (i != string::npos) {
return (s.substr (i+1l, s.length() - 1));
}
return("");

}
int main(int argc, char** argv) {
string path = argv[1l];

std::cout << "The file name is \"" << getFileName (path) << "\"\n";

Discussion

See the previous recipe for details on how rfind and substr work. The only thing noteworthy about
Example 10-21 is that, as you probably are already aware, Windows has a path separator that is a
backslash instead of a forward-slash, so I added an #ifdef to conditionally set the path separator.

The path class in the Boost Filesystem library makes getting the last part of a full pathnamewhich may be
a file or directory nameeasy with the path::leaf member function. Example 10-22 shows a simple program
that uses it to print out whether a path refers to a file or directory.

Example 10-22. Getting a filename from a path
#include <iostream>

#include <cstdlib>

#include <boost/filesystem/operations.hpp>

using namespace std;

using namespace boost::filesystem;
Page 414

int main(int arac. char** arav) {

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 415

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 416

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 10.15. Extracting a Path from a Full Path and
Filename

Problem

You have the full path of a filename, e.g., d:\apps\src\foo.c, and you need to get the pathname,
d:\apps\src.

Solution

Use the same technique as the previous two recipes by invoking rfind and substr to find and get what
you want from the full pathname. See Example 10-23 for a short sample program.

Example 10-23. Get the path from a full path and filename
#include <iostream>

#include <string>

using std::string;

string getPathName (const string& s) {

char sep = '/';

#ifdef WIN32

sep = "\\';

#endif
size t i = s.rfind(sep, s.length());
if (i != string::npos) {

return(s.substr (0, 1));

}

return("");

}
int main(int argc, char** argv) ({
string path = argv[1l];

std::cout << "The path name is \"" << getPathName (path) << "\"\n";

Discussion

Example 10-23 is trivial, especially if you've already looked at the previous few recipes, so there is no
more to explain. However, as with many of the other recipes, the Boost Filesystem library provides a
way to extract everything but the last part of the filename with its branch_path function. Example 10-24
shows how to use it.

Example 10-24. Getting the base path

#include <iostream>
#include <cstdlib>
#include <boost/filesystem/operations.hpp>

using namespace std;
using namespace boost::filesystem;

int main(int argc, char** argv) {

Page 417

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 418

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Recipe 10.16. Replacing a File Extension
Problem

Given a filename, or a path and filename, you want to replace the file's extension. For example, if you are
given thesis.tex, you want to convert it to thesis.txt.

Solution

Use string's rfind and replace member functions to find the extension and replace it. Example 10-25
shows you how to do this.

Example 10-25. Replacing a file extension
#include <iostream>
#include <string>

using std::string;

void replaceExt (string& s, const string& newExt) ({

string::size type 1 = s.rfind('.', s.length());
if (i != string::npos) {
s.replace(i+l, newExt.length(), newExt);

}
}

int main (int argc, char** argv) {
string path = argv[1l];

replaceExt (path, "foobar"):;
std::cout << "The new name is \"" << path << "\"\n";

Discussion
This solution is similar to the ones in the preceding recipes, but in this case I used replace to replace a
portion of the string with a new string. replace has three parameters. The first parameter is the index

where the replace should begin, and the second is the number of characters to delete from the destination
string. The third parameter is the value that will be used to replace the deleted portion of the string.

See Also

Recipe 4.9

e prcy NEXT

Page 419

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

Page 420

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 421

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 10.17. Combining Two Paths into a Single Path
Problem

You have two paths and you have to combine them into a single path. You may have something like
/usr/home/ryan as a first path, and utils/compilers as the second, and wish to get
/ust/home/ryan/utils/compilers, without having to worry whether or not the first path ends with a path
separator.

Solution

Treat the paths as strings and use the append operator, operator+=, to compose a full path out of partial
paths. See Example 10-26.

Example 10-26. Combining paths
#include <iostream>
#include <string>

using std::string;

string pathAppend(const string& pl, const string& p2) {

char sep = '/';
string tmp = pl;

#ifdef WIN32

sep = "\\';
#endif
if (pllpl.length()] != sep) { // Need to add a
tmp += sep; // path separator

return (tmp + p2);
}
else
return(pl + p2);
}

int main(int argc, char** argv) {
string path = argv[1l];

std::cout << "Appending somedir\\anotherdir is \""
<< pathAppend (path, "somedir\\anotherdir") << "\"\n";

Discussion

The code in Example 10-26 uses strings that represent paths, but there's no additional checking on the
path class for validity and the paths used are only as portable as the values they contain. If, for example,
these paths are retrieved from the user, you don't know if they're using the right OS-specific format, or if
they contain illegal characters.

For many other recipes in this chapter I have included examples that use the Boost Filesystem library,

and when working with paths, this approach has lots of benefits. As I discussed in Recipe 10.7, the

Boost Filesystem library contains a path class that is a portable representation of a path to a file or

directory. The operations in the Filesystem library mostly work with path objects, and as such, the path

class can handle path composition from an absolute base and a relative path. (See Example 10-27.) Page 422

http://www.boost.org
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 423

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Chapter 11. Science and Mathematics

e _Introduction

e Recipe 11.1. Computing the Number of Elements in a Container
e Recipe 11.2. Finding the Greatest or [.east Value in a Container
e Recipe 11.3. Computing the Sum and Mean of Elements in a Container

e Recipe 11.4. Filtering Values Outside a Given Range

MEXT B

e Recipe 11.5. Computing Variance, Standard Deviation, and Other Statistical Functions

e Recipe 11.6. Generating Random Numbers
e Recipe 11.7. Initializing a Container with Random Numbers
e Recipe 11.8. Representing a Dynamically Sized Numerical Vector

e Recipe 11.9. Representing a Fixed-Size Numerical Vector

e Recipe 11.10. Computing a Dot Product

e Recipe 11.11. Computing the Norm of'a Vector

e Recipe 11.12. Computing the Distance Between Two Vectors
e Recipe 11.13. Implementing a Stride Iterator

e Recipe 11.14. Implementing a Dynamically Sized Matrix

e Recipe 11.15. Implementing a Constant-Sized Matrix

e Recipe 11.16. Multiplying Matricies

e Recipe 11.17. Computing the Fast Fourier Transform

e Recipe 11.18. Working with Polar Coordinates

e Recipe 11.19. Performing Arithmetic on Bitsets

e Recipe 11.20. Representing [arge Fixed-Width Integers

e Recipe 11.21. Implementing Fixed-Point Numbers

MEXT B

Page 424

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

Page 425

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Introduction

C++ 1s a language well suited for scientific and mathematical programming, due to its flexibility,
expressivity, and efficiency. One of the biggest advantages of C++ for numerical processing code is that
it can help you avoid redundancy.

Historically, numerical code in many programming languages would repeat algorithms over and over for
different kinds of numerical types (e.g., short, long, single, double, custom numerical types, etc.). C++
provides a solution to this problem of redundancy through templates. Templates enable you to write
algorithms independantly of the data representation, a technique known commonly as generic
programming.

C++ 1s not without its shortcomings with regards to numerical processing code. The biggest drawback
with C++in contrast to specialized mathematical and scientific programming languagesis that the standard
library is limited in terms of support of algorithms and data-types relevant to numerical programming. The
biggest oversights in the standard library are arguably the lack of matrix types and arbitrary precision
integers.

In this chapter, I will provide you with solutions to common numerical programming problems and
demonstrate how to use generic programming techniques to write numerical code effectively. Where
appropriate, [will recommend widely used open-source libraries with commercially friendly licenses and
a proven track record. This chapter introduces the basic techniques of generic programming gradually
from recipe to recipe.

Many programmers using C++ still distrust templates and generic programming due to their apparent
complexity. When templates were first introduced into the language they were neither well implemented
nor well understood by programmers and compiler implementers alike. As a result, many programmers,
including yours truly, avoided generic programming in C++ for several years while the technology
matured.

Today, generic programming is widely accepted as a powerful and useful programming paradigm, and is
supported by the most popular programming languages. Furthermore, C++ compiler technology has
improved by leaps and bounds, and modern compilers deal with templates in a much more standardized
and efficient manner. As a result, modern C++ is a particularly powerful language for scientific and
numerical applications.

e prcv wExT

Page 426

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

Page 427

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 428

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 11.1. Computing the Number of Elements in a
Container

Problem

You want to find the number of elements in a container.

Solution

You can compute the number of elements in a container by using the size member function or the
distance function from the <algorithm> header as in Example 11-1.

Example 11-1. Computing the Number of Elements in a Container
#include <algorithm>

#include <iostream>

#include <vector>

using namespace std;

int main() {
vector<int> wv;
v.push back(0);
v.push back(1);
v.push back(2);
cout << v.size() << endl;
cout << distance(v.begin(), v.end()) << endl;

The program in Example 11-1 produces the following output:
3
3

Discussion

The size member function, which returns the number of elements in a standard container, is the best
solution in cases where the container object is accessible. I also demonstrated distance in Example 11-1,
because when writing generic code it is common to work with only a pair of iterators. When working
with iterators, you often don't have access to the type of the container or to its member functions.

The distance function, like most STL algorithms, is actually a template function. Since the type of the
template argument can be deduced automatically by the compiler from the function arguments, you don't
have to explicitly pass it as a template parameter. You can, of course, write out the template parameter

explicitly if you want to, as follows:
cout << distance<vector<int>::iterator>(v.begin(), v.end()) << endl;

The distance function performance depends on the kind of iterator used. It takes constant time if the input

iterator is a random-access iterator; otherwise, it operates in linear time. (Iterator concepts are explained
in Recipe 7.1.)

See Also

Recipe 15.1

Page 429

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 430

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 431

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 11.2. Finding the Greatest or Least Value in a
Container

Problem
You want to find the maximum or minimum value in a container.
Solution

Example 11-2 shows how to find the minimum and maximum elements in a container by using the
functions max_element and min_element found in the <algorithm> header. These functions return iterators
that point to the first occurence of an element with the largest or smallest value, respectively.

Example 11-2. Finding the minimum or maximum element from a container
#include <algorithm>

#include <vector>

#include <iostream>

using namespace std;

int getMaxInt (vector<int>& v) {
return *max _element (v.begin(), v.end());

}

int getMinInt (vector<int>& v) {
return *min_element (v.begin(), v.end());

}

int main() {
vector<int> v;
for (int i1=10; i < 20; ++i) v.push back(i);
cout << "min integer = " << getMinlInt(v) << endl;
cout << "max integer = " << getMaxInt(v) << endl;

The program in Example 11-2 produces the following output:

min integer = 10
max integer = 19
Discussion

You may have noticed the dereferencing of the return value from the calls to min_element and
max_element. This is because these functions return iterators and not actual values, so the results have to
be dereferenced. You may find it a minor inconvenience to have to dereference the return type, but it
avoids unnecssarily copying the return value. This can be especially significant when the return value has
expensive copy semantics (e.g., large strings).

The generic algorithms provided by the standard library are obviously quite useful, but it is more
important for you to be able to write your own generic functions for getting the minimum and maximum
value from a container. For instance, let's say that you want a single function which returns the minimum
and maximum values by modifying reference parameters instead of returning them in a pair or some other
structure. This is demonstrated in Example 11-3.

Example 11-3. Generic function for returning the minimum and maximum value
#include <algorithm>

#include <vector>

#include <iostream>

Page 432

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 433

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 434

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 11.3. Computing the Sum and Mean of Elements in a
Container

Problem
You want to compute the sum and mean of elements in a container of numbers.
Solution

You can use the accumulate function from the <numeric> header to compute the sum, and then divide by
the size to get the mean. Example 11-5 demonstrates this using a vector.

Example 11-5. Computing the sum and mean of a container
#include <numeric>

#include <iostream>

#include <vector>

using namespace std;

int main() {
vector<int> wv;
v.push back(1);
v.push back(2);
v.push back(3);
v.push back(4);

int sum = accumulate(v.begin(), v.end(), 0);
double mean = double(sum) / v.size();

cout << "sum = " << sum << endl;

cout << "count = " << v.size() << endl;

cout << "mean = " << mean << endl;

The program in Example 11-5 produces the following output:

sum = 10
count = 4
mean = 2.5
Discussion

The accumulate function generally provides the most efficient and simplest method to find the sum of all
the elements in a container.

Even though this recipe has a relatively simple solution, writing your own generic function to compute a
mean is not so easy. Example 11-6 shows one way to write such a generic function:

Example 11-6. A generic function to compute the mean
template<class Iter T>
double computeMean (Iter T first, Iter T last) {
return static cast<double>(accumulate (first, last, 0.0))
/ distance (first, last);

The computeMean function in Example 11-6 is sufficient for most purposes but it has one restriction: it
doesn't work with input iterators such as istream_iterator.

Page 435

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 436

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 437

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 11.4. Filtering Values Outside a Given Range

Problem

You want to ignore values from a sequence that fall above or below a given range.

Solution
Use the remove copy _if function found in the <algorithm>, as shown in Example 11-8.

Example 11-8. Removing elements from a sequence below a value
#include <algorithm>

#include <vector>

#include <iostream>

#include <iterator>

using namespace std;
struct OutOfRange

{

OutOfRange (int min, int max)

: min_ (min), max (max)
{1}
bool operator() (int x) {
return (x < min_) || (x > max_);
}
int min ;
int max ;

}i

int main()
{
vector<int> v;
v.push back(
v.push back(
v.push back(
v (
v (

) ;
2);
8);
4);

’

6
1
1
.push _back (2
.push_back (30);

remove copy if(v.begin(), v.end(),
ostream iterator<int>(cout, "\n"), OutOfRange(10,25));

The program in Example 11-8 produces the following output:
12

18

24

Discussion

The remove_copy _if function copies the elements from one container to another container (or output
iterator), ignoring any elements that satisfy a predicate that you provide (it probably would have been
more accurate if the function was named copy _ignore _if). The function, however, does not change the
size of the target container. If, as is often the case, the number of elements copied by remove copy if'is
fewer than the size of the target container, you will have to shrink the target container by calling the erase
member function.

The function remove copy _if requires a unary predicate (a functor that takes one argument and returns a
boolean value) that returns true when an element should not be copied. In Example 11-8 the predicate is

R Y Y R YR 2 YUY A Y A p PR s o Y YT a VA p PRy DY Y N R (R R |

Page 438

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 439

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 440

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 11.5. Computing Variance, Standard Deviation, and
Other Statistical Functions

Problem

You want to compute one or more of the common statistics such as variance, standard deviation, skew,
and kurtosis of a sequence of numbers.

Solution

You can use the accumulate function from the <numeric> header to compute many meaningful statistical
functions beyond simply the sum by passing custom function objects. Example 11-9 shows how to
compute several important statistical functions, using accumulate.

Example 11-9. Statistical functions
#include <numeric>

#include <cmath>

#include <algorithm>

#include <functional>
#include <vector>

#include <iostream>

using namespace std;

template<int N, class T>
T nthPower (T x) {
T ret = x;
for (int i=1; i < N; ++1i) {
ret *= x;
}

return ret;

template<class T, int N>
struct SumDiffNthPower ({
SumDiffNthPower (T x) : mean (x) { };
T operator() (T sum, T current) {
return sum + nthPower<N>(current - mean);
}
T mean ;

b

template<class T, int N, class Iter T>
T nthMoment (Iter T first, Iter T last, T mean) {
size t cnt = distance(first, last);
return accumulate (first, last, T(), SumDiffNthPower<T, N> (mean)) / cnt;

template<class T, class Iter T>
T computeVariance(Iter T first, Iter T last, T mean) {
return nthMoment<T, 2> (first, last, mean):;

}

template<class T, class Iter T>
T computeStdDev (Iter T first, Iter T last, T mean) {
return sqgrt (computeVariance (first, last, mean));

}

template<class T, class Iter T> Page 441
T computeSkew (Iter T begin, Iter T end, T mean) {

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 442

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 443

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 11.6. Generating Random Numbers
Problem

You want to generate some random floating-point numbers in the interval of [0.0, 1.0) with a uniform
distribution.

Solution

The C++ standard provides the C runtime function rand in the <cstdlib> header that returns a random
number in the range of 0 to RAND MAX inclusive. The RAND MAX macro represents the highest
value returnable by the rand function. A demonstration of using rand to generate random floating-point
numbers is shown in Example 11-11.

Example 11-11. Generating random numbers using rand
#include <cstdlib>

#include <ctime>

#include <iostream>

using namespace std;

double doubleRand() {
return double(rand()) / (double(RAND MAX) + 1.0);
}
int main() {
srand(static_cast<unsigned int>(clock()));
cout << "expect 5 numbers within the interval [0.0, 1.0)" << endl;
for (int i=0; 1 < 5; i++) {
cout << doubleRand() << "\n";

}

cout << endl;

The program in Example 11-11 should produce output similar to:
expect 5 numbers within the interval [0.0, 1.0)
.010437

. 740997

.34906

.369293

.544373

O O O O o

Discussion

To be precise, random number generation functions, including rand, return pseudo-random numbers as
opposed to truly random numbers, so whenever I say random, I actually mean pseudo-random.

Before using the rand function you need to seed (i.e., initialize) the random number generator with a call
to srand. This assures that subsequent calls to rand won't produce the same sequence of numbers each
time the program is run. The simplest way to seed the random number generator is to pass the result from
a call to clock from the <ctime> header as an unsigned int. Reseeding a random number generator causes
number generation to be less random.

The rand function is limited in many ways. To begin with, it only generates integers, and only does so

using a uniform distribution. Furthermore, the specific random number generation algorithm used is

implementation specific and, thus, random number sequences are not reproducible from system to system p, . 444
given the same seed. This is a problem for certain kinds of applications, as well as when testing and

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 445

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 446

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 11.7. Initializing a Container with Random Numbers
Problem

You want to fill an arbitrary container with random numbers.

Solution

You can use either the generate or generate n functions from the <algorithm> header with a functor that
returns random numbers. See Example 11-13 for an example of how to do this.

Example 11-13. Initializing containers with random numbers
#include <algorithm>

#include <vector>

#include <iterator>

#include <iostream>

#include <cstdlib>

using namespace std;

struct RndIntGen
{
RndIntGen (int 1, int h)
low (1), high(h)
{1

int operator() () const {
return low + (rand() % ((high - low) + 1));
}
private:
int low;
int high;
}i
int main() {

srand(static_cast<unsigned int>(clock()));

vector<int> v (5);

generate (v.begin(), v.end(), RndIntGen(l, 6));

copy(v.begin(), v.end(), ostream iterator<int>(cout, "\n"));

}

The program in Example 11-13 should produce output similar to:
3

Sy N

Discussion

The standard C++ library provides the functions generate and generate n specifically for filling
containers with the result of a generator function. These functions accept a nullary functor (a function
pointer or function object with no arguments) whose result is assigned to contiguous values in the
container. Sample implementations of the generate and generate n functions are shown in Example
11-14.

Example 11-14. Sample implementations of generate and generate_n
template<class Iter T, class Fxn T>

void generate(Iter T first, Iter T last, Fxn T f) {
while (first != last) *first++ = f() :

Page 447

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 448

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 449

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 11.8. Representing a Dynamically Sized Numerical
Vector

Problem

You want a type for manipulating numerical vectors with dynamic size.

Solution

You can use the valarray template from the <valarray> header. Example 11-15 shows how you can use
the valarray template.

Example 11-15. Using valarray
#include <valarray>
#include <iostream>

using namespace std;

int main() {
valarray<int> v (3);
v[0] = 1; v[1] = 2; v[2] = 3;
cout << v[0] << ", " K< VvI[]l] <", " K Vv[2] << endl;
v = v + vy
cout << v[0] << ", " K< VvI[]l] <", " K Vv[2] << endl;
v /= 2;
cout << v[0] << ", " K< VvI[1l] <", " K v[2] << endl;

The program in Example 11-15 will output the following:
1, 2, 3

Discussion

Despite its name, vector is not intended to be used as a numerical vector; rather, the valarray template is.
The valarray is designed so that C++ implementations, especially those on high-performance machines,
can apply specialized vector optimizations to it. The other big advantage of valarray is that it provides
numerous overloaded operators specifically for working with numerical vectors. These operators provide
such functionality as vector addition and scalar multiplication.

The valarray template can also be used with the standard algorithms like a C-style array. See Example
11-16 to see how you can create iterators to the beginning of, and one past the end of, a valarray.

Example 11-16. Getting iterators to valarray

template<class T>

T* valarray begin(valarray<T>& x) {
return &x[0];

}

template<class T>
T* valarray end(valarray<T>& x) {
return valarray begin(x) + x.size();

}

Even though it appears somewhat academic, you should not try to create an end iterator for a valarray by
writing &x[x.size()]. If this works, it is only by accident since indexing a valarray past the last valid index

Page 450

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 451

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 452

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 11.9. Representing a Fixed-Size Numerical Vector

Problem

You want an efficient representation for manipulating constant-sized numerical vectors

Solution

On many common software architectures, it is more efficient to use a custom vector implementation than
a valarray when the size is known at compile time. Example 11-17 provides a sample implementation of

a fixed-size vector template called a kvector.

Example 11-17. kvector.hpp

#include

<algorithm>

#include <cassert>

template<class Value T, unsigned int N>
class kvector

{
public:

// public fields

Value T

m[N];

// public typedefs

typedef
typedef
typedef
typedef
typedef
typedef

Value T value type;

Value T* iterator;

const Value T* const iterator
Value T& reference;

const Value Té& const referenc
size t size type;

// shorthand for referring to kvector

typedef

kvector self;

// member functions
template<typename Iter T>

void copy(Iter T first, Iter T last)
iterator begin() { return m; }
iterator end() { return m + N; }

const iterator begin()
const iterator end()

reference operator[] (size type n) { r

const reference operator[?(size_type n)
static size type size() {

return N;

// vector operations
self& operator+=(const self& x) {

for (int i=0; 1i<N; ++i) m[1i] += x.
}
self& operator-=(const self& x) {

for (int i=0; 1i<N; ++i) m[i] -= x.

// scalar operations
self& operator=(value type x) {
std::fill(begin(), end(), x); return *this;

}

self& operator+=(value type x) {
for (int i=0; i<N; ++i) m[i] += x;

}

self& operator-=(value type x) {

I

ey

{ copy(first,

const { return m; }
const { return m + N; }

eturn m[n]; }

}

return *this;

m[i]; return

last, begin(

const { return m[n]; }

m[i]; return *this;

*this;

));

}

Page 453

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 454

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 455

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 11.10. Computing a Dot Product
Problem

You have two containers of numbers that are the same length and you want to compute their dot
product.

Solution

Example 11-19 shows how you can compute a dot product using the inner product function from the
<numeric> header.

Example 11-19. Computing the dot product
#include <numeric>

#include <iostream>

#include <vector>

using namespace std;

int main() {
int v1[] = { 1, 2, 3 };
int v2[] = { 4, 6, 8 };

cout << "the dot product of (1,2,3) and (4,6,8) is ";
cout << inner product(vl, vl + 3, v2, 0) << endl;

The program in Example 11-19 produces the following output:
the dot product of (1,2,3) and (4,6,8) is 40

Discussion

The dot product is a form of inner product known as the Euclidean Inner Product. The inner product

function is declared as follows:
template<class In, class In2, class T>
T inner product (In first, In last, In2 first2, T init);

template<class In, class In2, class T, class BinOp, class BinOp2>
T inner product (In first, In last, In2 first2, T init, BinOp op, Binop2 op2);

The first form of inner product sums the result of multiplying corresponding elements from two
containers. The second form of the inner_product function allows you to supply your own pairwise
operation and accumulation function. See Example 11-20 to see a sample implementation demonstrating
how inner_product works.

Example 11-20. Sample implementation of inner_product()
template<class In, class In2, class T, class BinOp, class BinOp2>
T inner product (In first, In last, In2 first2, T init, BinOp op, Binop2 op2) {
while (first != last) {
BinOp(init, BinOp2 (*first++, *first2++));
}

return init;

Because of its flexible implementation, you can use inner_product for many more purposes than just
computing a dot product (e.g., you can use it to compute the distance between two vectors or compute

the norm of a vector).
) Page 456

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 457

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Recipe 11.11. Computing the Norm of a Vector

Problem

You want to find the norm (i.e., the length) of a numerical vector.

Solution

You can use the inner product function from the <numeric> header to multiply a vector with itself as
shown in Example 11-21.

Example 11-21. Computing the norm of a vector
#include <numeric>

#include <vector>

#include <cmath>

#include <iostream>

using namespace std;

template<typename Iter T>
long double vectorNorm(Iter T first, Iter T last) {
return sqgrt(inner product (first, last, first, 0.0L));

}

int main() {
int v[] = { 3, 4 };
cout << "The length of the wvector (3,4) is ";
cout << vectorNorm(v, v + 2) << endl;

The program in Example 11-21 produces the following output:
The length of the vector (3,4) is 5

Discussion

Example 11-21 uses the inner product function from the <numeric> header to find the dot product of
the numerical vector with itself. The square root of this is known as the vector norm or the length of a
vector.

Rather than deduce the result type in the vectorNorm function, I chose to return a long double to lose as
little data as possible. If a vector is a series of integers, it is unlikely that in a real example, that the
distance can be meaningfully represented as an integer as well.

e prcv wExT

Page 458

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

Page 459

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 460

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 11.12. Computing the Distance Between Two Vectors
Problem

You want to find the Euclidean distance between two vectors.

Solution

The Euclidean distance between two vectors is defined as the square root of the sum of squares of
differences between corresponding elements. This can be computed as shown in Example 11-22.

Example 11-22. Finding the distance between two vectors
#include <cmath>
#include <iostream>

using namespace std;

template<class Iter T, class Iter2 T>
double vectorDistance(Iter T first, Iter T last, Iter2 T first2) {
double ret = 0.0;
while (first != last) {
double dist (*first++) - (*first2++);
ret += dist * dist;

}

return ret > 0.0 ? sqgrt(ret) : 0.0;
}
int main() {

int v1[] = { 1, 5 };

int v2[] = { 4, 9 };

cout << "distance between vectors (1,5) and (4,9) is ";
cout << vectorDistance(vl, vl + 2, v2) << endl;

The program in Example 11-22 produces the following output:

distance between vectors (1,5) and (4,9) is 5
Discussion

Example 11-22 is a straightforward recipe that shows how to write a simple generic function in the style
of the STL. To compute the vector distances, I could have instead used the inner product function I
chose not to use a functor, because it was more complex than was strictly needed. Example 11-23
shows how you can compute vector distance using a functor and the inner_product function from the
<numeric> header.

Example 11-23. Computing the distance between vectors using inner_product
#include <numeric>

#include <cmath>

#include <iostream>

#include <functional>

using namespace std;

template<class Value T>
struct DiffSquared {
Value T operator() (Value T x, Value T y) const {

return (x - y) * (x - y);
} Page 461

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 462

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 463

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 11.13. Implementing a Stride Iterator

Problem

You have a contiguous series of numbers and you want to iterate through the elements # at a time.
Solution

Example 11-24 presents a stride iterator class as a separate header file.

Example 11-24. stride_iter.hpp
#ifndef STRIDE ITER HPP
#define STRIDE ITER HPP

#include <iterator>
#include <cassert>

template<class Iter T>

class stride iter

{

public:
// public typedefs
typedef typename std::iterator traits<Iter T>::value type value type;
typedef typename std::iterator traits<Iter T>::reference reference;
typedef typename std::iterator traits<Iter T>::difference type

difference_ type;

typedef typename std::iterator traits<Iter T>::pointer pointer;
typedef std::random access iterator tag iterator category;
typedef stride iter self;

// constructors

stride iter() : m(NULL), step(0) { };
stride iter(const selfé& x) : m(x.m), step(x.step) { }
stride iter(Iter T x, difference type n) : m(x), step(n) { }

// operators

self& operator++() { m += step; return *this; }

self operator++(int) { self tmp = *this; m += step; return tmp; }
self& operator+=(difference type x) { m += x * step; return *this; }

self& operator--() { m -= step; return *this; }

self operator--(int) { self tmp = *this; m -= step; return tmp; }
self& operator-=(difference type x) { m -= x * step; return *this; }
reference operator([] (difference type n) { return m[n * step]; }
reference operator*() { return *m; }

// friend operators

friend bool operator==(const self& x, const self& y) {
assert(x.step == y.step);
return x.m == y.m;

}

friend bool operator!=(const self& x, const self& y) {
assert(x.step == y.step);
return x.m != y.m;

}

friend bool operator<(const self& x, const self& y)
assert(x.step == y.step);
return x.m < y.m;

}

friend difference type operator-(const self& x, const self& y) |
assert(x.step == y.step);

Page 464
return (x.m - y.m) / x.step;

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 465

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 466

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 11.14. Implementing a Dynamically Sized Matrix
Problem

You need to store and represent Matricies of numbers where the dimensions (number of rows and
columns) are not known at compile time.

Solution

Example 11-28 provides a general purpose and efficient implementation of a dynamically sized matrix
class using the stride iterator from Recipe 11.12 and a valarray.

Example 11-28. matrix.hpp
#ifndef MATRIX HPP
#define MATRIX HPP

#include "stride iter.hpp" // see Recipe 11.12

#include <valarray>
#include <numeric>
#include <algorithm>

template<class Value T>

class matrix

{

public:
// public typedefs
typedef Value T value type;
typedef matrix self;
typedef value type* iterator;
typedef const value type* const iterator;
typedef Value T* row type;
typedef stride iter<value type*> col type;
typedef const value type* const row type;
typedef stride iter<const value type*> const col type;

// constructors

matrix() : nrows(0), ncols(0), m() { }
matrix (int r, int c¢) : nrows(r), ncols(c), m(xr * c) { }
matrix (const self& x) : m(x.m), nrows(x.nrows), ncols(x.ncols) { }

template<typename T>
explicit matrix(const valarray<T>& Xx)
m(x.size() + 1), nrows(x.size()), ncols (1)

for (int i=0; i<x.size(); ++i) m[i] = x[i];

// allow construction from matricies of other types
template<typename T>

explicit matrix(const matrix<T>& x)

m(x.size() + 1), nrows(x.nrows), ncols(x.ncols)

copy(x.begin(), x.end(), m.begin());

// public functions

int rows() const { return nrows; }

int cols() const { return ncols; }

int size() const { return nrows * ncols; } Page 467

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 468

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 469

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 11.15. Implementing a Constant-Sized Matrix
Problem

You want an efficient matrix implementation where the dimensions (i.e., number of rows and columns)
are constants known at compile time.

Solution

When the dimensions of a matrix are known at compile time, the compiler can more easily optimize an
implementation that accepts the row and columns as template parameters as shown in Example 11-30.

Example 11-30. kmatrix.hpp
#ifndef KMATRIX HPP
#define KMATRIX HPP

#include "kvector.hpp"
#include "kstride iter.hpp"

template<class Value T, int Rows N, int Cols N>
class kmatrix
{
public:
// public typedefs
typedef Value T value type;
typedef kmatrix self;
typedef Value T* iterator;
typedef const Value T* const iterator;
typedef kstride iter<Value T*, 1> row type;
typedef kstride iter<Value T*, Cols N> col type;
typedef kstride iter<const Value T*, 1> const row type;
typedef kstride iter<const Value T*, Cols N> const col type;

// public constants
static const int nRows = Rows N;
static const int nCols Cols N;

// constructors
kmatrix() { m = Value T()
kmatrix (const self& x) { m

;o)
= x.m; }
explicit kmatrix(Value T& x) {

m = x.m; }

// public functions
static int rows() { return Rows N; }
static int cols() { return Cols N; }
row_type row(int n) { return row type (begin()
col type col(int n) { return col type(begin()
const row type row(int n) const {
return const row type(begin() + (n * Cols N));
}
const col type col(int n) const {
return const col type(begin() + n);
}
iterator begin() { return m.begin(); }
iterator end() { return m.begin() + size(); }
const iterator begin() const { return m; }
const iterator end() const { return m + size(); }
static int size() { return Rows N * Cols N; }

n * Cols N)); }

+
+ n); }

// operators
row type operator[] (int n) { return row(n); }

Page 470

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 471

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 472

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 11.16. Multiplying Matricies
Problem
You want to perform efficient multiplication of two matricies.

Solution

Example 11-32 shows an implementation of matrix multiplication that can be used with both the
dynamic- or fixed-size matrix implementations. This algorithm technically produces the result of the
equation A=A+B*C, which is, perhaps surprisingly, an equation more efficiently computed than A=B*C.

Example 11-32. Matrix multiplication
#include "matrix.hpp" // recipe 11.13
#include "kmatrix.hpp" // recipe 11.14
#include <iostream>

#include <cassert>

using namespace std;

class M2, class M3>
M1& ml, const M2& m2,

template<class M1,
void matrixMultiply (const
{
assert(ml.cols() ==
assert (ml.rows() ==
assert (m2.cols() ==
for (int i=ml.rows()-1;
for (int j=m2.cols()-1;
for (int k = ml.cols(
m3[1i][jJ] += ml[i] [k]
}

M3& m3)
m2.rows

(
m3.rows (
m3.cols (

}

int main()

{

matrix<int> ml (2, 1);

matrix<int> m2 (1, 2);

kmatrix<int, 2, 2> m3;

m3 = 0;

ml[0]([0] = 1; ml[1]([0] = 2;

m2[0][0] = 3; m2[0][1] = 4;

matrixMultiply (ml, m2, m3);

cout << "(" << m3[0][0] << ", "M << m3[0][1] << M)" <<
cout << "(" << m3[1][0] << ", "M << m3[1][1] << M)" <<

Example 11-32 produces the following output:
(3, 4)
(6, 8)

Discussion

endl;
endl;

When multiplying two matricies, the number of columns in the first matrix must be equal to the number of
rows in the second matrix. The resulting matrix has the number of rows of the first matrix and the number
of columns of the second matrix. I assure that these conditions are true during debug builds by using the

assert macro found in the <cassert> header.

Page 473

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 474

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 475

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 11.17. Computing the Fast Fourier Transform

Problem

You want to compute the Discrete Fourier Transform (DFT) efficiently using the Fast Fourier Transform
(FFT) algorithm.

Solution
The code in Example 11-33 provides a basic implementation of the FFT.

Example 11-33. FFT implementation
#include <iostream>

#include <complex>

#include <cmath>

#include <iterator>

using namespace std;

unsigned int bitReverse (unsigned int x, int log2n) {

int n = 0;

int mask = 0x1;

for (int i=0; i < log2n; i++) {
n <<= 1;
n |= (x & 1);
x >>= 1;

}

return n;

const double PI = 3.1415926536;

template<class Iter T>
void fft(Iter T a, Iter T b, int log2n)
{
typedef typename iterator traits<Iter T>::value type complex;
const complex J(0, 1);
int n = 1 << log2n;
for (unsigned int i=0; 1 < n; ++1i) {
b[bitReverse (i, log2n)] = ali]l;
}
for (int s = 1; s <= log2n; ++s) {
int m =1 << s;
int m2 = m >> 1;
complex w(l, 0);
complex wm = exp(-J * (PI / m2));
for (int j3=0; j < m2; ++3j) {
for (int k=j; k < n; k +=m) {
complex t = w * b[k + m2];
complex u = bl[k];

blk] = u + t;
bk + m2] = u - t;
}
W *= wm;
}
}
}
int main() {

typedef complex<double> cx;
cx all] = { cx(0,0), cx(1,1), cx(3,3), cx(4,4),

Page 476

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 477

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 478

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 11.18. Working with Polar Coordinates
Problem

You want to represent and manipulate polar coordinates.

Solution

The complex template from the <complex> header provides functions for conversion to and from polar
coordinates. Example 11-34 shows how you can use the complex template class to represent and
manipulate polar coordinates.

Example 11-34. Using complex template class to represent polar coordinates
#include <complex>
#include <iostream>

using namespace std;

int main() {
double rho = 3.0; // magnitude
double theta = 3.141592 / 2; // angle
complex<double> coord = polar(rho, theta);

cout << "rho = " << abs(coord) << ", theta = " << arg(coord) << endl;
coord += polar (4.0, 0.0);
cout << "rho = " << abs(coord) << ", theta = " << arg(coord) << endl;

Example 11-34 produces the following output:
rho = 3, theta = 1.5708
rho = 5, theta = 0.643501

Discussion

There is a natural relationship between polar coordinates and complex numbers. Even though the two
are somewhat interchangeable, it is generally not a good idea to use the same type to represent different
concepts. Since using the complex template to represent polar coordinates is inelegant, I have provided a
polar coordinate class that is more natural to use in Example 11-35.

Example 11-35. A polar coordinate class
#include <complex>
#include <iostream>

using namespace std;

template<class T>
struct BasicPolar
{
public:
typedef BasicPolar self;

// constructors

BasicPolar() : m() { }
BasicPolar (const selfé& x) : m(x.m) { }
BasicPolar (const T& rho, const T& theta) : m(polar(rho, theta)) { }

// assignment operations

self operator-() { return Polar(-m); }
self& operator+=(const self& x) { m += x.m; return *this; }
self& overator—-=(const self& x) {m -= x.m: return *this: }

Page 479

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 480

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 481

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 11.19. Performing Arithmetic on Bitsets

Problem

You want to perform basic arithmetic and comparison operations on a set of bits as if it were a binary
representation of an unsigned integer number.

Solution

The functions in Example 11-36 provide functions that allow arithmetic and comparison of bitset class
template from the <bitset> header as if it represents an unsigned integer.

Example 11-36. bitset_arithmetic.hpp
#include <stdexcept>
#include <bitset>

bool fullAdder (bool bl, bool b2, bool& carry) {
bool sum = (bl ©~ b2) " carry;
carry = (bl && b2) || (bl && carry) || (b2 && carry);
return sum;

bool fullSubtractor (bool bl, bool b2, boolé& borrow) {

bool diff;
if (borrow) {
diff = !'(bl »~ b2);
borrow = !bl || (bl && b2);
}
else {
diff = bl ~ b2;
borrow = !bl && b2;

}

return diff;

template<unsigned int N>
bool bitsetLtEqg(const std::bitset<N>& x, const std::bitset<N>& vy)
{
for (int 1i=N-1; 1 >= 0; i--) {
if (x[i] && !y[i]) return false;
if (!'x[i] && yI[i]) return true;
}

return true;

template<unsigned int N>
bool bitsetLt (const std::bitset<N>& x, const std::bitset<N>& vy)
{
for (int 1i=N-1; 1 >= 0; i--) {
if (x[i] && !y[i]) return false;
if (!'x[i] && yI[i]) return true;
}

return false;

template<unsigned int N>
bool bitsetGtEg(const std::bitset<N>& x, const std::bitset<N>& vy)
{
for (int 1i=N-1; 1 >= 0; i--) {
if (x[i] && !y[i]) return true;
if (!'x[1i] && yI[i]) return false;

Page 482

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 483

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 484

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 11.20. Representing Large Fixed-Width Integers
Problem

You need to perform arithmetic of numbers larger than can be represented by a long int.
Solution

The BigInt template in Example 11-38 uses the bitset from the <bitset> header to allow you to represent
unsigned integers using a fixed number of bits specified as a template parameter.

Example 11-38. big_int.hpp
#ifndef BIG_INT HPP
#define BIG_INT HPP

#include <bitset>

#include "bitset arithmetic.hpp" // Recipe 11.20

template<unsigned int N>
class BigInt
{
typedef BigInt self;
public:
BigInt() : bits() { }
BigInt (const self& x) : bits(x.bits) { }
BigInt (unsigned long x) {
int n = 0;
while (x) {
bits[n++] = x & 0x1;
x >>= 1;
}
}
explicit BigInt (const std::bitset<N>& x) : bits(x) { }

// public functions
bool operator[] (int n) const { return bits[n]; }
unsigned long toUlong() const { return bits.to ulong(); }

// operators
self& operator<<=(unsigned int n) {
bits <<= n;
return *this;
}
self& operator>>=(unsigned int n) {
bits >>= n;
return *this;
}
self operator++ (int) {
self i = *this;
operator++();
return 1i;
}
self operator--(int) {
self i = *this;
operator--();
return 1i;
}
self& operator++() {
bool carry = false;
bits[0] = fullAdder(bits[0], 1, carry);

Page 485

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 486

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 487

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 11.21. Implementing Fixed-Point Numbers
Problem

You want to perform computations on real numbers using a fixed-point representation of a real number
rather than using a floating-point type.

Solution

Example 11-40 provides the implementation of a fixed-point real number, where the number of places to
the right of the binary point is a template parameter. For instance basic_fixed real<10> has 10 binary
digits to the right of the binary point, allowing it to represent numbers up to a precision of 1/1,024.

Example 11-40. Representing real numbers using a fixed-point implementation
#include <iostream>

using namespace std;

template<int E>
struct BasicFixedReal

{
typedef BasicFixedReal self;

static const int factor =1 << (E - 1);

BasicFixedReal () : m(0) { }

BasicFixedReal (double d) : m(static cast<int>(d * factor)) { }
self& operator+=(const self& x) { m += x.m; return *this; }
self& operator-=(const self& { m -= x.m; return *this; }

X)
self& operator*=(const self& x) { m *= x.m; m >>= E; return *this; }
self& operator/=(const self& x) { m /= x.m; m *= factor; return *this; }
self& operator*=(int x) { m *= x; return *this; }
self& operator/=(int x) { m /= x; return *this; }
self operator-() { return self(-m); }
double toDouble() const { return double(m) / factor; }

// friend functions

friend self operator+(self x, const self& y) { return x += y; }

friend self operator-(self x, const self& y) { return x -= y; }

friend self operator* (self x, const self& y) { return x *= y; }

friend self operator/ (self x, const self& y) { return x /= y; }

// comparison operators

friend bool operator==(const self& x, const self& y) { return x.m == y.m; }
friend bool operator!=(const self& x, const self& y) { return x.m != y.m; }

friend bool operator>(const self& x, const self& y) { return x.m > y.m; }

friend bool operator<(const selfé& x, const self& y) { return x.m < y.m; }

friend bool operator>=(const self& x, const self& y) { return x.m >= y.m; }

friend bool operator<=(const self& x, const self& y) { return x.m <= y.m; }
private:

int m;

}i
typedef BasicFixedReal<10> FixedReal;

int main() {
FixedReal x(0);
for (int i=0; 1 < 100; ++i) {
x += FixedReal (0.0625);
}
cout << x.toDouble() << endl;
} Page 488

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 489

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Chapter 12. Multithreading

e _Introduction

e Recipe 12.1. Creating a Thread

e Recipe 12.2. Making a Resource Thread-Safe

e Recipe 12.3. Notifying One Thread from Another

e Recipe 12.4. Initializing Shared Resources Once

e Recipe 12.5. Passing an Ar: ent to a Thread Function

e prcv wExT

Please register to remove this banner.

Page 490

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Introduction

This chapter describes how to write multithreaded programs in C++ using the Boost Threads library
written by William Kempf. Boost is a set of open source, peer-reviewed, portable, high-performance
libraries ranging from simple data structures to a complex parsing framework. The Boost Threads library
is a framework for multithreading. For more information on Boost, see www.boost.org.

Standard C++ contains no native support for multithreading, so it is not possible to write portable
multithreaded code the same way you would write portable code that uses other standard library classes
like string, vector, list, and so on. The Boost Threads library goes a long way toward making a standard,
portable multithreading library though, and it is designed to minimize many common multithreading
headaches.

Unlike the standard library or third-party libraries, however, using a multithreading library is not as easy
as unzipping it into a directory, adding your #includes, and coding away. For all but trivial multithreaded
applications, you must design carefully using proven patterns and known tactics to avoid bugs that are
otherwise virtually guaranteed to happen. In a typical, single-threaded application, it is easy to find
common programming errors: off-by-one loops, dereferencing a null or deleted pointer, loss of precision
on floating-point conversions, and so on. Multithreaded programs are different. Not only is it tedious to
keep track of what several threads are doing in your debugger, but multithreaded programs are
nondeterministic, meaning that bugs may only show up under rare or complicated circumstances.

It is for this reason that this chapter should not be your introduction to multithreaded programming. If
you have already done some programming with threads, but not with C++ or the Boost Threads library,
this chapter will get you on your way. But describing the fundamentals of multithreaded programming is
beyond the scope of this book. If you have never done any multithreaded programming before, then you
may want to read an introductory book on multithreading, though such titles are scant because most
programmers don't use threads (though they probably ought to).

Much of the Boost documentation and some of the following recipes discuss the classes using the
concept/model idea. A concept is an abstract description of something, usually a class, and its behavior,
without any assumptions about its implementation. Typically, this description includes construction and
destruction behavior, and each of the methods, including their preconditions, parameters, and
postconditions. For example, the concept of a Mutex is something that can be locked and unlocked by
one thread at a time. A model is a concrete manifestation of a concept, such as the mutex class in the
Boost Threads library. A refinement on a concept is a specialization of it, such as a ReadWriteMutex,
which is a Mutex with some additional behavior.

Finally, threads are doing one of three things: working, waiting for something, or ready to go but not
waiting for anything or doing any work. These states are called run, wait, and ready. These are the terms
[will use in the following recipes.

=1

Page 491

http://www.boost.org
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

Page 492

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 493

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 12.1. Creating a Thread

Problem

You want to create a thread to perform some task while the main thread continues its work.
Solution

Create an object of the class thread, and pass it a functor that does the work. The creation of the thread
object will instantiate an operating system thread that begins executing at operator() on your functor (or
the beginning of the function if you passed in a function pointer instead). Example 12-1 shows you how.

Example 12-1. Creating a thread
#include <iostream>

#include <boost/thread/thread.hpp>
#include <boost/thread/xtime.hpp>

struct MyThreadFunc {
void operator() () |
// Do something long-running...

}
} threadFun;

int main() {

boost::thread myThread (threadFun); // Create a thread that starts
// running threadFun

boost::thread::yield(); // Give up the main thread's timeslice
// so the child thread can get some work
// done.

// Go do some other work...

myThread.join(); // The current (i.e., main) thread will wait
// for myThread to finish before it returns

Discussion

Creating a thread is deceptively simple. All you have to do is create a thread object on the stack or the
heap, and pass it a functor that tells it where it can begin working. For this discussion, a "thread" is
actually two things. First, it's an object of the class thread, which is a C++ object in the conventional
sense. When I am referring to this object, I will say "thread object." Then there is the thread of execution,
which is an operating system thread that is represented by the tHRead object. When I say "thread" (not
in fixed-width font), I mean the operating system thread.

Let's get right to the code in the example. The tHRead constructor takes a functor (or function pointer)

that takes no arguments and returns void. Look at this line from Example 12-1:
boost::thread myThread (threadFun) ;

This creates the myTHRead object on the stack, which represents a new operating system thread that
begins executing tHReadFun. At that point, the code in threadFun and the code in main are, at least in
theory, running in parallel. They may not exactly be running in parallel, of course, because your machine
may have only one processor, in which case this is impossible (recent processor architectures have made
this not quite true, but I'll ignore dual-core processors and the like for now). If you have only one

1 1 .11 . 4 .1 1 L 1

Page 494

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 495

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 496

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 12.2. Making a Resource Thread-Safe
Problem

You are using multiple threads in a program and you need to ensure a resource is not modified by more
than one thread at a time. In general, this process is called making the resource thread-safe, or serializing
access to it.

Solution

Use the class mutex, defined in boost/thread/mutex.hpp, to synchronize access among threads.
Example 12-2 shows a simple use of a mutex object to control concurrent access to a queue.

Example 12-2. Making a class thread-safe
#include <iostream>

#include <boost/thread/thread.hpp>

#include <string>

// A simple queue class; don't do this, use std::queue
template<typename T>
class Queue {

public:
Queue () {}
~Queue () {}

void enqueue (const T& x) |
// Lock the mutex for this queue
boost::mutex::scoped lock lock(mutex);
list .push back(x);
// A scoped lock is automatically destroyed (and thus unlocked)
// when it goes out of scope

T dequeue() {
boost::mutex::scoped lock lock(mutex);

if (list_.empty())
throw "empty!"; // This leaves the current scope, so the
T tmp = list .front(); // lock is released
list .pop front();
return (tmp) ;
} // Again: when scope ends, mutex 1is unlocked

private:
std::1ist<T> list ;
boost::mutex mutex ;

}i

Queue<std::string> queueOfStrings;

void sendSomething() {
std::string s;

for (int i = 0; 1 < 10; ++1) {
queueOfStrings.enqueue ("Cyrus") ;

void recvSomething() {
std::string s;

for (int 1 = 0; i < 10; ++1i) {

Page 497

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 498

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 499

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 12.3. Notifying One Thread from Another
Problem

You are using a pattern where one thread (or group of threads) does something and it needs to let
another thread (or group of threads) know about it. You may have a master thread that is handing out
work to slave threads, or you may use one group of threads to populate a queue and another to remove
the data from it and do something useful.

Solution

Use mutex and condition objects, declared in boost/thread/mutex. hpp and
boost/thread/condition.hpp. Y ou can create a condition for each situation you want threads to wait for,
and notify any waiting threads on the condition. Example 12-4 shows how to use signaling in a
master/slave threading model.

Example 12-4. Signaling between threads
#include <iostream>

#include <boost/thread/thread.hpp>
#include <boost/thread/condition.hpp>

#include <boost/thread/mutex.hpp>

#include <list>

#include <string>

class Request { /*...*/ };
// A simple job queue class; don't do this, use std::gqueue

template<typename T>
class JobQueue {

public:
JobQueue () {}
~JobQueue () {}

void submitJob (const T& x) {
boost::mutex::scoped lock lock(mutex);
list .push back(x);
workToBeDone .notify one();

}

T getdob () {
boost::mutex::scoped lock lock(mutex);

workToBeDone .wait(lock); // Wait until this condition is
// satisfied, then lock the mutex

T tmp = list .front();

list .pop front();

return (tmp) ;

}

private:
std::1ist<T> list ;
boost::mutex mutex ;
boost::condition workToBeDone ;

}i
JobQueue<Request> myJobQueue;
void boss() {

for (;;) |
// Get the request from somewhere

Page 500

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 501

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 502

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 12.4. Initializing Shared Resources Once
Problem

You have a number of threads that are using a resource that must only be initialized once.
Solution

Either initialize the resource before the threads are started, or if you can't, use the call _once function
defined in <boost/thread/once.hpp> and the type once flag. Example 12-5 shows how to use call once.

Example 12-5. Initializing something once
#include <iostream>

#include <boost/thread/thread.hpp>
#include <boost/thread/once.hpp>

// Some sort of connection class that should only be initialized once
struct Conn {

static void init() {++i ;}

static boost::once flag init ;

static int i ;

//
i
int Conn::i = 0;
boost::once flag Conn::init = BOOST ONCE INIT;
void worker() {

boost::call once(Conn::init, Conn::init);
// Do the real work...
}

Conn c; // You probably don't want to use a global, so see the
// next Recipe

int main() {
boost::thread group grp;

for (int i = 0; 1 < 100; ++1i)
grp.create thread(worker);

grp.join all();

std::cout << c.i << '"\n'; // c.i =1

Discussion

A shared resource has to be initialized somewhere, and you may want the first thread to use it to do the
initializing. A variable of type once flag (whose exact type is platform-dependent) and the call once
function can keep multiple threads from re-initializing the same object. You have to do two things.

First, initialize your once flag variable to the macro BOOST ONCE INIT . Thisisa

platform-dependent value. In Example 12-5, the class Conn represents some sort of connection

(database, socket, hardware, etc.) that [only want initialized once even though multiple threads may try

to initialize it. This sort of thing comes up often when you want to load a library dynamically, perhaps one

specified in an application config file. The once flag is a static class variable because I only want one Page 503

1mifiali7atinn 1A matter how many invcfancece onf the ~lace there mayv e QA T o1ve the flaog a cfartinog vvaliie

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 504

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 505

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 12.5. Passing an Argument to a Thread Function
Problem

You have to pass an argument to your thread function, but the thread creation facilities in the Boost
Threads library only accept functors that take no arguments.

Solution

Create a functor adapter that takes your parameters and returns a functor that takes no parameters. You

can use the functor adapter where you would have otherwise put the thread functor. Take a look at
Example 12-6 to see how this is done.

Example 12-6. Passing an argument to a thread function
#include <iostream>

#include <string>

#include <functional>

#include <boost/thread/thread.hpp>

// A typedef to make the declarations below easier to read
typedef void (*WorkerFunPtr) (const std::stringé&);

template<typename FunT, // The type of the function being called
typename ParamT> // The type of its parameter
struct Adapter {

Adapter (FunT f, ParamT& p) : // Construct this adapter and set the
£f (f), p_(&p) {} // members to the function and its arg

void operator() () { // This just calls the function with its arg
f ("p_):

}

private:
FunT £
ParamT* p ; // Use the parameter's address to avoid extra copying

}i

void worker (const std::string& s) {
std::cout << s << '\n';

int main() {

std::string sl "This is the first thread!";
std::string s2 = "This is the second thread!";

boost::thread thrl (Adapter<WorkerFunPtr, std::string>(worker, sl));
boost::thread thr2 (Adapter<WorkerFunPtr, std::string>(worker, s2));

thrl.join();
thr2.join();

Discussion
The fundamental problem you need to solve here is not specific to threading or Boost, but a general
problem when you have to pass a functor with one signature to something that requires a different

signature. The solution is to create an adapter.

The syntax can get a little messy, but essentially what Example 12-6 does is create a temporary functor

Page 506

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 507

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Chapter 13. Internationalization

o _Introduction

e Recipe 13.1. Hardcoding a Unicode String

e Recipe 13.2. Writing and Reading Numbers

e Recipe 13.3. Writing and Reading Dates and Times
e Recipe 13.4. Writing and Reading Currency

e Recipe 13.5. Sorting Localized Strings

e prcv NExT

Please register to remove this banner.

Page 508

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Introduction

This chapter describes solutions to some common requirements when internationalizing C++ programs.
Making software work in different locales (usually referred to as localization) usually requires solving two
problems: formatting user-visible strings such that they obey local conventions (such as those for date,
time, money, and numbers), and reconciling data in different character sets. This chapter deals mostly
with the first issue, and only briefly with the second, because there is little standardized support for
different character sets since most aspects of it are largely implementation dependent.

Most software will also run in countries other than the one where it was written. To support this practical
reality, the C++ standard library has several facilities for writing code that will run in different countries.
The design of these facilities, however, is different than many other standard library facilities such as
strings, file input and output, containers, algorithms, and so forth. For example, the class that is used to
represent a locale is locale, and is provided in the <locale> header. locale provides facilities for writing to
and reading from streams using locale-specific formatting, and for getting information about a locale, such
as the currency symbol or the date format. The standard only requires that a single locale be provided
though, and that is the "C" or classic locale. The classic locale uses ANSI C conventions: American
English conventions and 7-bit ASCII character encoding. It is up to the implementation whether it will
provide locale instances for the various languages and regions.

There are three fundamental parts to the <locale> header. First, there is the locale class. It encapsulates
all aspects of behavior for a locale that C++ supports, and it is your entry point to the different kinds of
locale information you need to do locale-aware formatting. Second, the most granular part of a locale,
and the concrete classes you will be working with, are called facets. An example of a facet is a class such
as time_put for writing a date to a stream. Third, each facet belongs to a category, which is a way of
grouping related facets together. Examples of categories are numeric, time, and monetary (the time put
facet I mentioned a moment ago belongs to the time category). I mention categories briefly in this
chapter, but they only really come in handy when you are doing some more sophisticated stuff with
locales, so I don't cover their use in depth here.

Every C++ program has at least one locale, referred to as the global locale (it is often implemented as a
global static object). By default, it is the classic "C" locale unless you change it to something else. One of
the locale constructors allows you to instantiate the user's preferred locale, although an implementation is
free to define exactly what a user's "preferred" locale is.

In most cases, you will only use locales when writing to or reading from streams. This is the main focus
of this chapter.

e prey NEXT

Page 509

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

Page 510

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 511

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 13.1. Hardcoding a Unicode String
Problem

You have to hardcode a Unicode, i.e., wide-character, string in a source file.
Solution

Do this by hardcoding the string with a prefix of L and typing the character into your source editor as
you would any other string, or use the hexadecimal number that represents the Unicode character you're
after. Example 13-1 shows how to do it both ways.

Example 13-1. Hardcoding a Unicode string
#include <iostream>

#include <fstream>

#include <string>

using namespace std;
int main() {

// Create some strings with Unicode characters
wstring wsl = L"Infinity: \u221lE";
wstring ws2 = L"Euro: ";

wchar t w([] = L"Infinity: \u221E";

wofstream out ("tmp\\unicode.txt");
out << ws2 << endl;
wcout << ws2 << endl;

Discussion

Hardcoding a Unicode string is mostly a matter of deciding how you want to enter the string in your
source editor. C++ provides a wide-character type, wchar_t, which can store Unicode strings. The exact
implementation of wchar _t is implementation defined, but it is often UTF-32. The class wstring, defined in
<string>, is a sequence of wchar ts, just like the string class is a sequence of chars. (Strictly speaking, of
course, wstring is a typedef for basic_string<wchar t>).

The easiest way to enter Unicode characters is to use the L prefix to a string literal, as in Example 13-1:
wstring wsl = L"Infinity: \u2210"; // Use the code itself
wstring ws2 = L"Euro: _"; // Or just type it in

Now, you can write these wide-character strings to a wide-character stream, like this:
wcout << wsl << endl; // wcout is the wide char version of cout

This goes for files, too:
wofstream out ("tmp\\unicode.txt");
out << ws2 << endl;

The trickiest part of dealing with different character encodings isn't embedding the right characters in your
source files, it's knowing what kind of character data you are getting back from a database, HTTP
request, user input, and so on, and this is beyond the realm of the C++ standard. The C++ standard
does not require a particular encoding, rather that the character encoding used by your operating system
to store source files can be anything, as long as it supports at least the 96 characters used by the C++
language. For characters that are not part of this character set, called the basic source character set, the

Page 512

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 513

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 514

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 13.2. Writing and Reading Numbers
Problem

You need to write a number to a stream in a formatted way that obeys local conventions, which are
different depending on where you are.

Solution

Imbue the stream you are writing to with the current locale and then write the numbers to it, as in
Example 13-2, or you can set the global locale and then create a stream. The latter approach is explained
in the discussion.

Example 13-2. Writing numbers using localized formatting
#include <iostream>

#include <locale>

#include <string>

using namespace std;
// There is a global locale in the background that is set up by the

// runtime environment. It is the "C" locale by default. You can
// replace it with locale::global (const localeg).

int main() {
locale loc(""); // Create a copy of the user's locale
cout << "Locale name = " << loc.name() << endl;
cout.imbue (loc); // Tell cout to use the formatting of
// the user's locale
cout << "pi in locale " << cout.getloc().name() << " is "

<< 3.14 << endl;

Discussion

Example 13-2 shows how to use the user's locale to format a floating-point number. Doing so requires
two steps, creating an instance of the locale class and then associating, or imbuing, the stream with it.

To begin with, Example 13-2 creates loc, which is a copy of the user's locale. You have to do this using

locale's constructor with an empty string (and not the default constructor), like this:
locale loc("");

The difference is subtle but important, and I'll come back to it in a moment. Creating a locale object in
this way creates a copy of the "user's locale," which is something that is implementation defined. This
means that if the machine has been configured to use American English, locale::name() will return a locale
string such as "en US", "English United States.1252", "english-american", and so on. The actual string is
implementation defined, and the only one required to work by the C++ standard is "C".

By comparison, locale's default constructor returns a copy of the current global locale. There is a single,
global locale object for every C++ program that is run (probably implemented as a static variable
somewhere in the runtime libraryexactly how this is done is implementation defined). By default, it is the
C locale, and you can replace it with locale::global(locale& loc). When streams are created, they use the
global locale at the time of creation, which means that cin, cout, cerr, wcin, wcout, and weerr use the C
locale, so you have to change them explicitly if you want the formatting to obey a certain locale's

) Page 515
conventions. 8¢

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 516

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 517

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 13.3. Writing and Reading Dates and Times
Problem

You need to display or read dates and times using local formatting conventions.
Solution

Use the time_t type and tm struct from <ctime>, and the date and time facets provided in <locale>, to
write and read dates and times (facets are described in the discussion in a moment). See Example 13-4
for a sample.

Example 13-4. Writing and reading dates
#include <iostream>

#include <ctime>

#include <locale>

#include <sstream>

#include <iterator>

using namespace std;
void translateDate(istreamé& in, ostreamé& out) {

// Create a date reader
const time get<char>& dateReader =
use facet<time get<char> >(in.getloc());

// Create a state object, which the facets will use to tell
// us if there was a problem.
ios base::iostate state = 0;

// End marker
istreambuf iterator<char> end;

tm t; // Time struct (from <ctime>)

// Now that all that's out of the way, read in the date from
// the input stream and put it in a time struct.
dateReader.get date(in, end, in, state, &t);

// Now the date is in a tm struct. Print it to the out stream
// using its locale. Make sure you only print out what you
// know is valid in t.
if (state == || state == ios base::eofbit) {
// The read succeeded.
const time put<char>& dateWriter =

use facet<time put<char> >(out.getloc());
char fmt[] = "%x";

if (dateWriter.put (out, out, out.fill(),
&t, &fmt[0], &fmt[2]).failed())
cerr << "Unable to write to output stream.\n";
} else {
cerr << "Unable to read cin!\n";

int main() {

Page 518
cin.imbue (locale ("english"));

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 519

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 520

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 13.4. Writing and Reading Currency

Problem

You need to write or read a formatted currency value to or from a stream.

Solution
Use the money put and money _get facets to write and read currency, as shown in Example 13-6.

Example 13-6. Writing and reading currency
#include <iostream>

#include <locale>

#include <string>

#include <sstream>

using namespace std;

long double readMoney (istreamé& in, bool intl = false) {
long double val;

// Create a reader facet
const money get<char>& moneyReader =
use facet<money get<char> >(in.getloc());

// End marker
istreambuf iterator<char> end;

// State variable for detecting errors
ios_base::iostate state = 0;

moneyReader.get (in, end, intl, in, state, val);

// failbit will be set if something went wrong
if (state != 0 && ! (state & ios base::eofbit))
throw "Couldn't read money!\n";

return(val) ;

void writeMoney (ostreamé& out, long double val, bool intl = false) {

// Create a writer facet
const money put<char>& moneyWriter =
use facet<money put<char> >(out.getloc());

// Write to the stream. Call failed() (the return value is an

// ostreambuf iterator) to see if anything went wrong.

if (moneyWriter.put (out, intl, out, out.fill(), val).failed())
throw "Couldn't write money!\n";

int main() {

long double val = 0;
float exchangeRate = 0.775434f; // Dollars to Euros
locale locEn("english");
locale locFr ("french");

Page 521
cout << "Dollars: ";

- VR .

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 522

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 523

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 13.5. Sorting Localized Strings
Problem

You have a sequence of strings that contain non-ASCII characters, and you need to sort according to
local convention.

Solution

The locale class has built-in support for comparing characters in a given locale by overriding operator.
You can use an instance of the locale class as your comparison functor when you call any standard
function that takes a functor for comparison. (See Example 13-8.)

Example 13-8. Locale-specific sorting
#include <iostream>

#include <locale>

#include <string>

#include <vector>

#include <algorithm>

using namespace std;
bool localelessThan (const string& sl, const stringé& s2) {

const collate<char>& col =
use facet<collate<char> >(locale()); // Use the global locale

const char* pbl = sl.data();
const char* pb2 = s2.data();

return (col.compare (pbl, pbl + sl.size(),
pb2, pb2 + s2.size()) < 0);
int main() {
// Create two strings, one with a German character

string sl = "diat";
string s2 = "dich";

vector<string> v;
v.push back(sl);
v.push back(s2);

// Sort without giving a locale, which will sort according to the
// current global locale's rules.

sort (v.begin(), v.end());
for (vector<string>::const iterator p = v.begin();
p !'= v.end(); ++p)

cout << *p << endl;

// Set the global locale to German, and then sort

locale::global (locale ("german")) ;

sort (v.begin(), v.end(), localeLessThan);

for (vector<string>::const iterator p = v.begin();
p !'= v.end(); ++p)

cout << *p << endl;

The first sort follows ASCII sorting convention, and therefore the output looks like this:

1 1.

Page 524

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 525

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Chapter 14. XML

o _Introduction

e Recipe 14.1. Parsing a Simple XML Document

e Recipe 14.2. Working with Xerces Strings

e Recipe 14.3. Parsing a Complex XML Document

e Recipe 14.4. Manipulating an XML Document

e Recipe 14.5. Validating an XML Document with a DTD

e Recipe 14.6. Validating an XML Document with a Schema
e Recipe 14.7. Transforming an XML Document with XSLT

o Recipe 14.8. Evaluating an XPath Expression

e Recipe 14.9. Using XML to Save and Restore a Collection of Objects

e prcv wExT

Please register to remove this banner.

Page 526

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 527

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Introduction

XML is important in many areas, including information storage and retrieval, publishing, and network
communication; in this chapter, you'll learn to work with XML in C++. Because this book is about C++
rather than XML, I'll assume you already have some experience with the various XML-related
technologies I discuss, including SAX, DOM, XML Schema, XPath, and XSLT. Don't worry if you're
not an expert in all of these areas; the recipes in this chapter are more or less independent of each other,
so you should be able to skip some of the recipes and still understand the rest. In any case, each recipe
provides a quick explanation of the XML concepts and tools it uses.

If you come from another programming language, such as Java, you may expect to find the tools for
XML processing in C++ to be included in the C++ standard library. Unfortunately, XML was in its
infancy when the C++ standard was approved, and while there's strong interest in adding XML
processing to a future version of the C++ standard library, for now you will have to rely on the collection
of excellent third-party XML libraries available in C++.

Before you start reading recipes, you may want download and install the libraries I'll be covering in this
chapter. Table 14-1 shows the homepage of each library; Table 14-2 shows the features of each library
and the recipes that use the library. The table doesn't show each library's exact level of conformance to
the various XML specifications and recommendations because this information is likely to change in the
near future.

Table 14-1. C++ libraries for XML

Library name Homepage

TinyXml www.grinninglizard.com/tinyxml

Xerxes xml.apache.org/xerces-c

Xalan xml.apache.org/xalan-c

Pathan 1 software.decisionsoft.com/pathanIntro.html
Boost.Serialization www.boost.org/libs/serialization

Table 14-2. How each library is used

Library name Features Recipes

TinyXml DOM (nonstandard) Recipe 14.1

Xerxes SAX2, DOM, XML Schema Recipe 14.2-Recipe 14.8
Xalan XSLT, XPath Recipe 14.7-Recipe 14.8

Page 528
Pathan XPath Recipe 14.8

http://www.grinninglizard.com/tinyxml
http://www.boost.org/libs/serialization
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 529

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 530

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 14.1. Parsing a Simple XML Document
Problem

You have a collection of data stored in an XML document. You want to parse the document and turn
the data it contains into a collection of C++ objects. Your XML document is small enough to fit into
memory and doesn't use an internal Document Type Definition (DTD) or XML Namespaces.

Solution

Use the TinyXml library. First, define an object of type TiXmlDocument and call its LoadFile() method,
passing the pathname of your XML document as its argument. If LoadFile() returns true, your document
has been successfully parsed. If parsing was successful, call the RootElement() method to obtain a
pointer to an object of type TiXmlElement representing the document root. This object has a hierarchical
structure that reflects the structure of your XML document; by traversing this structure, you can extract
information about the document and use this information to create a collection of C++ objects.

For example, suppose you have an XML document animals.xml representing a collection of circus
animals, as shown in Example 14-1. The document root is named animalList and has a number of child
animal elements each representing an animal owned by the Feldman Family Circus. Suppose you also
have a C++ class named Animal, and you want to construct a std::vector of Animals corresponding to
the animals listed in the document.

Example 14-1. An XML document representing a list of circus animals
<?xml version="1.0" encoding="UTF-8"?>

<!-- Feldman Family Circus Animals -->
<animalList>
<animal>

<name>Herby</name>
<species>elephant</species>
<dateOfBirth>1992-04-23</dateOfBirth>
<veterinarian name="Dr. Hal Brown" phone="(801)595-9627"/>
<trainer name="Bob Fisk" phone="(801)881-2260"/>

</animal>

<animal>
<name>Sheldon</name>
<species>parrot</species>
<dateOfBirth>1998-09-30</dateOfBirth>

<veterinarian name="Dr. Kevin Wilson" phone="(801)466-6498"/>
<trainer name="Eli Wendel" phone="(801)929-2506"/>

</animal>

<animal>

<name>Dippy</name>
<species>penguin</species>
<dateOfBirth>2001-06-08</dateOfBirth>

<veterinarian name="Dr. Barbara Swayne" phone=" (801)459-7746"/>
<trainer name="Ben Waxman" phone="(801)882-3549"/>
</animal>
</animalList>

Example 14-2 shows how the definition of the class Animal might look. Animal has five data members
corresponding to an animal's name, species, date of birth, veterinarian, and trainer. An animal's name and
species are represented as std::strings, its date of birth is represented as a boost::gregorian::date from
Boost.Date Time, and its veterinarian and trainer are represented as instances of the class Contact, also
defined in Example 14-2. Example 14-3 shows how to use TinyXml to parse the document animals.xm!

traveree the nareed dociiment and nontilate a <td: vector of Animalc 1icino data extracted from the

Page 531

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 532

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 533

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 14.2. Working with Xerces Strings
Problem

You want to be able to handle the wide-character strings used by the Xerces library safely and easily. In
particular, you want to be able to store strings returned by Xerces functions as well as to convert
between Xerces strings and C++ standard library strings.

Solution

You can store wide-character strings returned by Xerces library functions using the template

std::basic_string specialized for the Xerces wide-character type XMLCh:
typedef std::basic string<XMLCh> XercesString;

To translate between Xerces strings and narrow-character strings, use the overloaded static method
TRanscode() from the class xercesc:: XMLString, defined in the header xercesc/util/XMLString.hpp.
Example 14-4 defines two overloaded utility functions, toNative and fromNative, that use transcode to
translate from narrow-character strings to Xerces strings and vice versa. Each function has two variants,
one that takes a C-style string and one that takes a C++ standard library string. These utility functions are
all you'll need to convert between Xerces string and narrow-character strings; once you define them,
you'll never need to call transcode directly.

Example 14-4. The header xerces_strings.hpp, for converting between Xerces strings and
narrow-character strings

#ifndef XERCES STRINGS HPP INCLUDED
#define XERCES STRINGS HPP INCLUDED

#include <string>
#include <boost/scoped array.hpp>
#include <xercesc/util/XMLString.hpp>

typedef std::basic string<XMLCh> XercesString;

// Converts from a narrow-character string to a wide-character string.
inline XercesString fromNative (const char* str)
{
boost::scoped array<XMLCh> ptr(xercesc::XMLString::transcode (str));
return XercesString(ptr.get());

// Converts from a narrow-character string to a wide-charactr string.
inline XercesString fromNative (const std::string& str)
{

return fromNative (str.c str());

// Converts from a wide-character string to a narrow-character string.
inline std::string toNative (const XMLCh* str)
{
boost::scoped array<char> ptr (xercesc::XMLString::transcode(str));
return std::string(ptr.get());

// Converts from a wide-character string to a narrow-character string.
inline std::string toNative (const XercesString& str)
{

return toNative(str.c str());

Page 534

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 535

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 536

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 14.3. Parsing a Complex XML Document

Problem

You have a collection of data stored in an XML document that uses an internal DTD or XML
Namespaces. You want to parse the document and turn the data it contains into a collection of C++
objects.

Solution

Use Xerces's implementation of the SAX2 API (the Simple API for XML, Version 2.0). First, derive a
class from xercesc::ContentHandler; this class will receive notifications about the structure and content of
your XML document as it is being parsed. Next, if you like, derive a class from xercesc::ErrorHandler to
receive warnings and error notifications. Construct a parser of type xercesc::SAX2XMLReader, register
instances of your handler classes using the parser's setContentHandler() and setErrorHandler() methods.
Finally, invoke the parser's parse() method, passing the file pathname of your document as its argument.

For example, suppose you want to parse the XML document animals.xml from Example 14-1 and
construct a std::vector of Animals representing the animals listed in the document. (See Example 14-2 for
the definition of the class Animal.) In Example 14-3, I showed how to do this using TinyXml. To make
the problem more challenging, let's add namespaces to the document, as shown in Example 14-5.

Example 14-5. List of circus animals, using XML Namespaces
<?xml version="1.0" encoding="UTF-8"?>

<!-- Feldman Family Circus Animals with Namespaces -->

<ffc:animallist xmlns:ffc="http://www.feldman-family-circus.com">
<ffc:animal>
<ffc:name>Herby</ffc:name>
<ffc:species>elephant</ffc:species>
<ffc:dateOfBirth>1992-04-23</ffc:dateOfBirth>
<ffc:veterinarian name="Dr. Hal Brown" phone="(801)595-9627"/>
<ffc:trainer name="Bob Fisk" phone="(801)881-2260"/>
</ffc:animal>

<!-- etc. -->

</ffc:animallList>

To parse this document with SAX2, define a ContentHandler, as shown in Example 14-6, and an
ErrorHandler, as shown in Example 14-7. Then construct a SAX2XMILReader, register your handlers,
and run the parser. This is illustrated in Example 14-8.

Example 14-6. A SAX2 ContentHandler for parsing the document animals.xml
#include <stdexcept> // runtime error
#include <vector>
#include <xercesc/sax2/Attributes.hpp>
#include <xercesc/sax2/DefaultHandler.hpp> // Contains no-op
// implementations of
// the various handlers
#include "xerces strings.hpp" // Example 14-4
#include "animal.hpp"

using namespace std;
using namespace xercesc;

// Returns an instance of Contact based

Page 537

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 538

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 539

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 14.4. Manipulating an XML Document
Problem

You want to represent an XML document as a C++ object so that you can manipulate its elements,
attributes, text, DTD, processing instructions, and comments.

Solution

Use Xerces's implementation of the W3C DOM. First, use the class
xercesc::DOMImplementationRegistry to obtain an instance of xercesc::DOMImplementation, then use
the DOMImplementation to create an instance of the parser xercesc::DOMBuilder. Next, register an
instance of xercesc::DOMErrorHandler to receive notifications of parsing errors, and invoke the parser's
parseURI() method with your XML document's URI or file pathname as its argument. If the parse is
successful, parseURI will return a pointer to a DOMDocument representing the XML document. You
can then use the functions defined by the W3C DOM specification to inspect and manipulate the
document.

When you are done manipulating the document, you can save it to a file by obtaining a DOMWriter from
the DOMImplementation and calling its writeNode() method with a pointer to the DOMDocument as its
argument.

Example 14-10 shows how to use DOM to parse the document animals.xml from Example 14-1,
locate and remove the node corresponding to Herby the elephant, and save the modified document.

Example 14-10. Using DOM to load, modify, and then save an XML document
#include <exception>

#include <iostream> // cout

#include <xercesc/dom/DOM.hpp>

#include <xercesc/framework/LocalFileFormatTarget.hpp>

#include <xercesc/sax/SAXException.hpp>

#include <xercesc/util/PlatformUtils.hpp>

#include "animal.hpp"

#include "xerces strings.hpp"

using namespace std;
using namespace xercesc;

/*
* Define XercesInitializer as in Example 14-8

*/

// RAII utility that releases a resource when it goes out of scope.
template<typename T>
class DOMPtr {

public:

DOMPtr (T* t) : t (t) { }

~DOMPtr() { t ->release(); }

T* operator->() const { return t ; }
private:

// prohibit copying and assigning
DOMPtr (const DOMPtr&) ;
DOMPtré& operator=(const DOMPtré&) ;
T* t ;

}i

// Reports errors encountered while parsing using a DOMBuilder.
class CircusErrorHandler : public DOMErrorHandler {

M~N11 KT 9 ~ .

Page 540

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 541

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 542

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 14.5. Validating an XML Document with a DTD

Problem

You want to verify that an XML document is valid according to a DTD.

Solution

Use the Xerces library with either the SAX2 (Simple API for XML) or the DOM parser.

To validate an XML document using SAX2, obtain a SAX2XMLReader, as in Example 14-8. Next,
enable DTD validation by calling the parser's setFeature() method with the arguments
xercesc:: XMLUni::fgSAX2CoreValidation and true. Finally, register an ErrorHandler to receive
notifications of DTD violations and call the parser's parse() method with your XML document's name as

its argument.

To validate an XML document using DOM, first construct an instance of XercesDOMParser. Next,

enable DTD validation by calling the parser's setValidationScheme() method with the argument xercesc::

XercesDOMParser::Val Always. Finally, register an ErrorHandler to receive notifications of DTD
violations and call the parser's parse() method with your XML document's name as its argument.

¥
-.
i
W
1

Here I'm using the class XercesDOMParser, an XML parser that has been part
of Xerces since before the DOM Level 3 DOMBuilder interface was
introduced. Using a XercesDOMParser makes the example a bit simpler, but
you can use a DOMBuilder instead if you like. See Discussion and Recipe 14.4.

.:;.‘

For example, suppose you modify the XML document animals.xml from Example 14-1 to contain a
reference to an external DTD, as illustrated in Examples Example 14-11 and Example 14-12. The code
to validate this document using the SAX2 API is presented in Example 14-13; the code to validate it
using the DOM parser is presented in Example 14-14.

Example 14-11. DTD animals.dtd for the file animals.xml

<!-- DTD for Feldman Family Circus Animals -->

<!ELEMENT animalList (animal+)>
<!ELEMENT animal (name, species, dateOfBirth,
veterinarian, trainer) >
<!ELEMENT name (#PCDATA)>
<!ELEMENT species (#PCDATA)>
<!ELEMENT dateOfBirth (#PCDATA)>
<!ELEMENT veterinarian EMPTY>
<!ELEMENT trainer EMPTY>
<!ATTLIST veterinarian
name CDATA #REQUIRED
phone CDATA #REQUIRED
>
<!ATTLIST trainer
name CDATA #REQUIRED
phone CDATA #REQUIRED

Example 14-12. The file animals.xml, modified to contain a DTD
<?xml version="1.0" encoding="UTF-8"?>

Page 543

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 544

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 545

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 14.6. Validating an XML Document with a Schema

Problem

You want to verify that an XML document is valid according to a schema, as specified in the XML
Schema 1.0 recommendation.

Solution
Use the Xerces library with either the SAX2 or the DOM parser.

Validating an XML document against a schema using the SAX2 API is exactly the same as validating a
document that contains a DTD, assuming the schema is contained in or referenced from the target
document. If you want to validate an XML document against an external schema, you must call the
parser's setProperty() method to enable external schema validation. The first argument to setProperty()
should be XMLUni::fgXercesSchemaExternalSchemal.ocation or
XMLUni::fgXercesSche-maExternalNoNameSpaceSchemaLocation, depending on whether the schema
has a target namespace. The second argument should be the location of the schema, expressed as a
const XMLCh*. Make sure to cast the second argument to void*, as explained in Recipe 14.5.

Validating an XML document against a schema using the XercesDOMParser is similar to validating a
document against a DTD, assuming the schema is contained in or referenced from the target document.
The only difference is that schema and namespace support must be explicitly enabled, as shown in

Example 14-15.

Example 14-15. Enabling schema validation with a XercesDOMParser
XercesDOMParser parser;

parser.setValidationScheme (XercesDOMParser: :Val Always);

parser.setDoSchema (true) ;

parser.setDoNamespaces (true) ;

If you want to validate an XML document against an external schema with a target namespace, call the
parser's setExternalSchemalocation() method with your schema's location as its argument. If you want
to validate an XML document against an external schema that has no target namespace, call the parser's
setExternalNoNamespaceSchema-Location() instead.

Similarly, to validate an XML document against a schema using a DOMBuilder, enable its validation

feature as follows:

DOMBuilder* parser = ...;
parser->setFeature (XMLUni: : fgDOMNamespaces, true);
parser->setFeature (XMLUni: :fgbDOMValidation, true);
parser->setFeature (XMLUni: : fgXercesSchema, true);

To validate against an external schema using DOMBUuilder, set the property
XMLUni::fgXercesSchemaExternalSchemal ocation or
XMLUni::fgXercesSchemaExternalNoName-SpaceSchemal ocation to the location of the schema.

For example, suppose you want to validate the document animals.xml from Example 14-1 using the
schema in Example 14-16. One way to do this is to add a reference to the schema to animals.xml, as

shown in Example 14-17. You can then validate the document with the SAX2 API, as shown in Example

14-13, or using DOM, as shown in Example 14-14, with the modification indicated in Example 14-15.

Example 14-16. Schema animals.xsd for the file animals.xml
<?xml version="1.0" encoding="UTF-8"?>

Page 546

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 547

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 548

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 14.7. Transforming an XML Document with XSLT

Problem

You want to transform an XML document using an XSLT stylesheet.

Solution

Use the Xalan library. First, construct an instance of the XSTL engine xalanc::XalanTransformer. Next,
construct two instances of xalanc:: XSLTInputSourceone to represent the document to be transformed
and the other to represent your stylesheetand an instance of xalanc:: XSLTResultTarget to represent the
document to be generated by the transformation. Finally, call the XSLT engine's transform() method,
passing the two XSLTInputSources and the XSLTResultTarget as arguments.

For example, suppose you want to be able to view the list of circus animals from Example 14-1 with
your web browser. An easy way to do this is with XSLT. Example 14-19 shows an XSLT stylesheet
that takes an XML document like animals.xml as input and generates an HTML document containing a
table with one data row per animal listing the animal's name, species, date of birth, veterinarian, and
trainer. Example 14-20 shows how to use the Xalan library to apply this stylesheet to the document
animals.xml. The HTML generated by the program in Example 14-20 is shown in Example 14-21,

reformatted for readability.

Example 14-19. Stylesheet for animals.xml

<?xml version="1.0" encoding="utf-8"?>
<!-- Stylesheet for Feldman Family Circus Animals -->

<xsl:stylesheet version="1.1"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="html"/>
<xsl:template match="/">
<html>
<head>
<title>Feldman Family Circus Animals</title>
</head>
<body>
<hl>Feldman Family Circus Animals</hl>
<table cellpadding="3" border="1">
<tr>
<th>Name</th>
<th>Species</th>
<th>Date of Birth</th>
<th>Veterinarian</th>
<th>Trainer</th>
</tr>
<xsl:apply-templates match="animal">
</xsl:apply-templates>
</table>
</body>
</html>
</xsl:template>
<xsl:template match="animal">
<tr>
<td><xsl:value-of select="name"/></td>
<td><xsl:value-of select="species"/></td>
<td><xsl:value-of select="dateOfBirth"/></td>
<xsl:apply-templates select="veterinarian"/>
<xsl:apply-templates select="trainer"/>
</tr>

Page 549

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 550

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 551

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 14.8. Evaluating an XPath Expression

Problem

You want to extract information from a parsed XML document by evaluating an XPath expression.

Solution

Use the Xalan library. First, parse the XML document to obtain a pointer to a xalanc::XalanDocument.
This can be done by using instances of XalanSourceTreelnit, XalanSourceTreeDOMSupport, and
XalanSourceTreeParserLiaisoneach defined in the namespace xalanclike so:

#include <xercesc/framework/LocalFileInputSource.hpp>

#include <xalanc/XalanSourceTree/XalanSourceTreeDOMSupport.hpp>
#include <xalanc/XalanSourceTree/XalanSourceTreeInit.hpp>
#include <xalanc/XalanSourceTree/XalanSourceTreeParserLiaison.hpp>

int main()

{

// Initialize the XalanSourceTree subsystem
XalanSourceTreelnit init;
XalanSourceTreeDOMSupport support;

// Interface to the parser
XalanSourceTreeParserLiaison liaison (support);

// Hook DOMSupport to ParserLiaison
support.setParserlLiaison(&liaison);

LocalFileInputSource src (document-location) ;
XalanDocument* doc = liason.ParseXMLStream(doc) ;

Alternatively, you can use the Xerces DOM parser to obtain a pointer to a DOMDocument, as in
Example 14-14, and then use instances of XercesDOMSupport, XercesParserLiaison, and
XercesDOM WrapperParsedSource each defined in namespace xalanc to obtain a pointer to a

XalanDocument corresponding to the DOMDocument:

#include <xercesc/dom/DOM.hpp>

#include <xalanc/XalanTransformer/XercesDOMWrapperParsedSource.hpp>
#include <xalanc/XercesParserLiaison/XercesParserLiaison.hpp>
#include <xalanc/XercesParserLiaison/XercesDOMSupport.hpp>

int main() {

DOMDocument*
XercesDOMSupport
XercesParserLiaison
XercesDOMWrapperParsedSource

doc = ... ;

support;

liaison (support) ;

src(doc, liaison, support);

XalanDocument* xalanDoc = src.getDocument ();

Next, obtain a pointer to the node that serves as the context node when evaluating the XPath expression.
You can do this by using XalanDocument's DOM interface. Construct an XPathEvaluator to evaluate the
XPath expression and a XalanDocumentPrefixResolver to resolve namespace prefixes in the XML
document. Finally, call the XPathEvaluator's evaluate() method, passing the DOMSupport, the context
node, the XPath expression, and the PrefixResolver as arguments. The result of evaluating the expression
is returned as an object of type XObjectPtr; the operations you can perform on this object depend on its
XPath data type, which you can query using the getType() method.

Page 552

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 553

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 554

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 14.9. Using XML to Save and Restore a Collection of
Objects

Problem

You want to be able to save a collection of C++ objects to an XML document and read it back into
memory later.

Solution

Use the Boost Serialization library. This library allows you to save and restore objects using classes
called archives . To make use of this library, you must first make each of your classes serializable,
which just means that instances of the class can be written to an archive, or serialized, and read back
into memory, or deserialized. Then, at runtime, you can save your objects to an XML archive using the
<< operator and restore them using the >> operator.

To make a class serializable, add a member function template serialize with the following signature:
template<typename Archive>
void serialize (Archive& ar, const unsigned int version);

The implementation of serialize should write each data member of the class to the specified archive as a
name-value pair, using the & operator. For example, if you want to serialize and deserialize instances of
the class Contact from Example 14-2, add a member function serialize, as shown in Example 14-25.

Example 14-25. Adding support for serialization to the class Contact from Example 14-2

#include <boost/serialization/nvp.hpp> // "name-value pair"
class Contact {

private:

friend class boost::serialization::access;

template<typename Archive>

void serialize (Archive& ar, const unsigned int version)

{
// Write (or read) each data-member as a name-value pair
using boost::serialization::make nvp;
ar & make nvp ("name", name);
ar & make nvp ("phone", phone);

}i
Similarly, you can make the class Animal from Example 14-2 serializable, as shown in Example 14-26.

Example 14-26. Adding support for serialization to the class Animal from Example 14-2

// Include serialization support for boost::gregorian::date
#include <boost/date time/gregorian/greg serialize.hpp>

class Contact {

private:
friend class boost::serialization::access;
template<typename Archive>
void serialize (Archive& ar, const unsigned int version)
{
// Write (or read) each data-member as a name-value pair Page 555
using boost::serialization::make nvp;

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 556

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Chapter 15. Miscellaneous

Introduction
Recipe 15.1. Using Function Pointers for Callbacks
Recipe 15.2. Using Pointers to Class Members

Recipe 15.3. Ensuring That a Function Doesn't Modify an Argument

Recipe 15.4. Ensuring That a Member Function Doesn't Modify Its Object

Recipe 15.5. Writing an Operator That Isn't a Member Function

Recipe 15.6. Initializing a Sequence with Comma-Separated Values

Please register to remove this banner.

MEXT B

MEXT B

Page 557

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

=1 NExT

Introduction

This chapter describes a few facets of C++ that don't neatly fit into any of the other chapters: function
and member pointers, const variables and member functions, and standalone (i.e., nonmember) operators
and a few other topics.

e prcy | NEXT B

Please register to remove this banner.

Page 558

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 559

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 15.1. Using Function Pointers for Callbacks
Problem

You plan to call some function func1, and at runtime you need it to invoke another function func2. For
one reason or another, however, you cannot simply hardcode the name of func2 within funcl. func2 may
not be known definitively at compile time, or perhaps funcl belongs to a third-party API that you can't
change and recompile. In either case, you need a callback function.

Solution

In the case of the functions above, declare funcl to take a pointer to a function, and pass it the address
of func2 at runtime. Use a typedef to make the messy syntax easier to read and debug. Example 15-1
shows how to implement a callback function with a function pointer.

Example 15-1. A callback function

#include <iostream>

// An example of a callback function
bool updateProgress (int pct) {

std::cout << pct << "% complete...\n";
return (true);

}

// A typedef to make for easier reading
typedef bool (*FuncPtrBoollInt) (int);

// A function that runs for a while
void longOperation (FuncPtrBoolInt f) {

for (long 1 = 0; 1 < 100000000; 1++)
if (1 % 10000000 == 0)
£(1 / 1000000);
}

int main() {

longOperation (updateProgress); // ok

Discussion

In a situation such as that shown in Example 15-1, a function pointer is a good idea if updateProgress
and longOperation shouldn't know anything about each other. For example, a function that updates the
progress by displaying it to the usereither in a user interface (UI) dialog box, in a console window, or
somewhere elsedoes not care about the context in which it is invoked. Similarly, the longOperation
function may be part of some data loading API that doesn't care whether it's invoked from a graphical
Ul, a console window, or by a background process.

The first thing you will want to do is determine what the signature of the function is you plan to call and
create a typedef for it. typedef is your friend when it comes to function pointers, because their syntax is
ugly. Consider how you would declare a function pointer variable f that contains the address of a function

that takes a single integer argument and returns a boolean. It would look like this:
bool (*f) (int); // £ is the variable name

Page 560
One could argue, convincingly, that this is no big deal and that I'm just a whiner. But what if you want a e

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 561

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 562

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 15.2. Using Pointers to Class Members
Problem

You need to refer to a data member or a member function with its address.
Solution

Use the class name and the scope operator (::) with an asterisk to correctly qualify the name. Example
15-2 shows how.

Example 15-2. Obtaining a pointer to a member
#include <iostream>
#include <string>

class MyClass {

public:
MyClass() : ival (0), sval ("foo") {}
~MyClass() {}
void incr() {++ival ;}
void decr() {ival --;}
private:

std::string sval ;
int ival ;
i

int main() {

MyClass obij;

int MyClass::* mpi = &MyClass::ival ; // Data member

std::string MyClass::* mps = &MyClass::sval ; // pointers

void (MyClass::*mpf) (); // A pointer to a member function that
// takes no params and returns void

void (*pf) (): // A normal function pointer

int* pi = &obj.ival ; // int pointer referring to int member--no
// problem.

mpf = &MyClass::incr; // A pointer to a member function. You can't

// write this value to a stream. Look at it
// in your debugger to see what its
// representation looks like.

pf = &MyClass::incr; // Error: &MyClass::incr is not an instance
// of a function

std::cout << "mpi = " << mpi << '\n';
std::cout << "mps = " << mps << '\n';
std::cout << "pi = " << pi << '"\n';
std::cout << "*pi = " << *pi << '"\n';

obj.*mpi = 5;
obj.*mps = "bar";

(obj.*mpf) (); // now obj.ival 1is 6 Page 563

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 564

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 565

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 15.3. Ensuring That a Function Doesn't Modify an
Argument

Problem

You are writing a function, and you need to guarantee that its arguments will not be modified when it is
invoked.

Solution

Declare your arguments with the keyword const to prevent your function from changing the arguments.
See Example 15-3 for a short sample.

Example 15-3. Guaranteeing unmodified arguments
#include <iostream>
#include <string>

void concat (const std::string& sl, // These are declared const, so they
const std::string& s2, // cannot be changed
std::string& out) {
out = sl + s2;

}

int main() {

std::string sl "Cabo ";
std::string s2 = "Wabo";
std::string s3;

concat (sl, s2, s3);

std::cout << "sl " << s1 << '"\n';

std::cout << "s2 = " << s2 << '\n';
std::cout << "s3 = " << s3 << '"\n';
}
Discussion

Example 15-3 demonstrates a straightforward use of const. There are a couple of good reasons for
declaring your function parameters const when you don't plan on changing them. First, you communicate
your intent to human readers of your code. By declaring a parameter as const, what you are saying,
essentially, is that the const parameters are for input. This lets consumers of your function, code with the
assumption that the values will not change. Second, it tells the compiler to disallow any modifying

operations, in the event you do so by accident. Consider an unsafe version of concat from Example 15-3:

void concatUnsafe(std::string& sl,
std::string& s2,
std::string& out) {
out = sl += s2; // Whoops, wrote to sl

Despite my fastidious coding habits, I have made a silly mistake and typed += when [meant to type +.
As aresult, when concatUnsafe is called, it will modify the arguments out and s1, which may come as
surprise to the userwho would expect a concatenation function to modify one of the source strings?

const to the rescue. Create a new function concatSafe, declare the variables const as in Example 15-3,

and it won't compile:
void concatSafe (const std::string& sl,

Page 566

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 567

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 568

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 15.4. Ensuring That a Member Function Doesn't
Modify Its Object

Problem

You need to invoke member functions on a const object, but your compiler is complaining that it can't
convert the type of object you are operating from const #ype to type.

Solution

Place the const keyword to the right of the member function declaration in both the class declaration and
definition. Example 15-4 shows how to do this.

Example 15-4. Declaring a member function const
#include <iostream>
#include <string>

class RecordSet {

public:
bool getFieldVal (int i, std::string& s) const;
//

}i

bool RecordSet::getFieldVal (int i, std::string& s) const {
// In here, you can't modify any nonmutable data
// members (see discussion)

}

void displayRecords (const RecordSet& rs) {
// Here, you can only invoke const member functions
// on rs

Discussion

Adding a trailing const to a member declaration and its definition forces the compiler to look more
carefully at what that member's body is doing to the object. const member functions are not allowed to
invoke any nonconst operation on data members. If one does, compilation fails. For example, if, in
RecordSet::getFieldVal, I updated a counter member, it wouldn't compile (assume that getFieldCount is

a member variable of RecordSet):
bool RecordSet::getFieldval (int i, std::string& s) const {
++getFieldCount ; // Error: const member function can't modify
// a member variable

//

It can also help catch more subtle errors, similar to how const works in its variable-qualifier role (see

Recipe 15.3). Consider this silly typo:
bool RecordSet::getFieldval (int i, std::string& s) const {

fieldArray [i] = s; // Oops, I meant the other way around
//

Once again, the compiler will abort and give you an error because you are trying to change a member
variable, and that's not allowed in const member functions. Well, with one exception.

- — e~ . o - e 4 N 4 e e . '« o~ &

Page 569

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 570

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 571

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 15.5. Writing an Operator That Isn't a Member
Function

Problem
You have to write a binary operator, and you can't or don't want to make it a class member function.
Solution

Use the operator keyword, a temporary variable, and a copy constructor to do most of the work, and
return the temporary object. Example 15-5 presents a simple string concatenation operator for a custom
String class.

Example 15-5. Concatenation with a nonmember operator
#include <iostream>
#include <cstring>

class String { // Assume the String class declaration
// has at least everything shown here
public:
String
String
String
~String

) ;
const char* p);
const Stringé& oriqg);
) {delete buf ;}

—_~ o~~~

String& append(const String& s);
size t length() const;

const char* data() const;

String& operator=(const Stringé& orig);

//
}i

String operator+ (const Stringé& lhs, const String& rhs) {

String tmp(lhs); // Copy construct a temp object
tmp.append(rhs); // Use a member function to do the real work

return (tmp) ; // Return the temporary
}
int main() {

String sl ("banana ");

String s2("rancher");
String s3, s4, sb5, s6;

s3 = sl + s2; // Works fine, no surprises

s4 = sl + "rama"; // Constructs "rama" automatically using
// the constructor String(const char*)

s5 = "ham " + s2; // Hey cool, it even does it backward

s6 = sl + "rama " + s2;

std::cout << "s3 = " << s3.data() << '\n';

std::cout << "s4 = " << sd4d.data() << '\n';

std::cout << "s5 = " << sh.data() << '\n';

std::cout << "s6 = " << s6.data() << '\n';

Discussion

Page 572

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 573

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 574

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Recipe 15.6. Initializing a Sequence with Comma-Separated
Values

Problem

You want to initialize a sequence with a comma-delimited set of values, like you can with a built-in array.

Solution

You can use a comma-initialization syntax on standard sequences (such as vector and list) by defining a
helper class and overloading the comma operator for it as demonstrated in Example 15-6.

Example 15-6. Utilities for comma initialization of standard sequences
#include <vector>

#include <iostream>

#include <iterator>

#include <algorithm>

using namespace std;

template<class Seq T>
struct comma helper

{
typedef typename Seq T::value type value type;

explicit comma helper (Seq T& x) : m(x) { }
comma helper& operator=(const value typeé& x) {
m.clear();

return operator+=(x);

}

comma helper& operator+=(const value type& x) {
m.push back (x) ;
return *this;

}

Seq T& m;

}i

template<typename Seq T>
comma helper<Seq T>
initialize(Seq T& x) {

return comma helper<Seq T>(x);

}

template<class Seq T, class Scalar T>
comma helper<Seq T>&
operator, (comma helper<Seq T>& h, Scalar T x) {
h += x;
return h;

int main() {
vector v;
int a = 2;
int b = 5;
initialize(v) =0, 1, 1, a, 3, b, 8, 13;
cout << v[3] << endl; // outputs 2
system ("pause") ;
return EXIT SUCCESS;

. . Page 575
Discussion

http://www.boost.org
http://www.boost.org
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 576

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of C++ Cookbook is a collie. The name refers to a type of sheepherding dog
that originated in the highlands of Scotland and Britain in the 1600s. One variety of sheep in the Scottish
Highlands had dark markings around its legs and face and was called the "Colley" sheep, a name derived
from the Older Scots word for "coal." The modern version of the collie, lighter and more thick-boned
than its Scottish ancestors, was bred in England in the late 19th century. Today, collies are primarily
house pets, though they are still used as farm dogs in the United States.

There are two distinct breeds of collie: rough-coated collies were used to guard sheep, and the
smooth-coated variety drove the livestock to market. Both are limber, streamlined dogs with a
pronounced snout and pointed ears. They are 22-26 inches tall and weigh 50-75 pounds. Their fur is
usually white with a second color that can vary from yellowish-white to brownish-red to coal-black.

Famous collies include Lassie, of course; Lyndon Johnson's pet Blanco; and Laddie from The Simpsons.

Matt Hutchinson was the production editor for C++ Cookbook . Octal Publishing, Inc. provided
production services. Darren Kelly, Adam Witwer, and Claire Cloutier provided quality control.

Karen Montgomery designed the cover of this book, based on a series design by Edie Freedman. The
cover image is a 19th-century engraving from Cassell's Natural History. Karen Montgomery produced
the cover layout with Adobe InDesign CS using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Keith Fahlgren to FrameMaker
5.5.6 with a format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra
that uses Perl and XML technologies. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations that appear in
the book were produced by Robert Romano, Jessamyn Read, and Lesley Borash using Macromedia
FreeHand MX and Adobe Photoshop CS. The tip and warning icons were drawn by Christopher Bing.
This colophon was written by Matt Hutchinson.

The online edition of this book was created by the Digital Books production group (John Chodacki,

Ken Douglass, and Ellie Cutler) using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, Ellie Cutler, and Jeff Liggett.

e prcv NExT

Page 577

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

Page 578

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Index

[SYMBOL][A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W
11IX11Y114]

e prey NEXT

|__ - Please register to remove this banner.

Page 579

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Index

[SYMBOL][A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W
11IX11Y114]

-Ae option

-Ar option

-cwd option

-EHsc option

-export all option
-export pragma option
-fvisibility option

-GR option

-nologo option

=g option
-showlIncludes option
-wchar_t option
-Zc:forScope option
-Zc:wchar _t option

.cpp files
2038 bug
k=12

Please register to remove this banner.

Page 580

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 581

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K] [L] [M] [N][O] [P] [Q] [R] [S] [T] [U] [V] [W
1IX][Y][Z]

abstract base classes
interfaces, creating with
rules
Abstract Factory design patterns
access
containers
threads, serializing
accumulate function
adding
classes
directories
margins
objects to vectors
rules
threads
address-of operator
algorithms
containers
deleting objects
iterating through
ranges
comparing
____partitioning
printing to streams
___ sorting
sequences
merging
randomly shuffling data
____rearranging
transforming elements
String Algorithms library
strings, searching
witi
aliases, namespaces
aligning text
alternating_many reads mutex
alternating_single read mutex
amortized constant time
append function
applications
building
Borland
C++Builder
CodeWarrior
Comeau
command-line tools

complex applications

Page 582

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 583

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 584

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K] [L] [M] [N][O] [P] [Q] [R] [S] [T] [U] [V] [W
1IX][Y][Z]

back_inserter class
bash

basic arithmetic operations, performing on bitsets
basic exception-safety guarantee

basic source character sets
behavior, locales
bidirectional iterators
big_int class
Biglnt template
binary files

ELF

variants of

binary operators, overloading
binary trees, implementing
bitsets
bloat (code)
Boost

directories

creating with

deleting with
files

copying with
___deleting with
Filesystem library
paths, combining with
Random library
Serialization library
Threads library
Boost.Build
complex applications
dynamic libraries
Hello World
installing
static libraries
toolsets
Boost.Serialization
BOOST_ONCE_INIT macro
Borland

bounded accuracy, comparing floating-point numbers with
bounds-checking on vectors

buffers
memory, resizing
sizing

text, autocorrecting
build systems
build tools

building

Page 585

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 586

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 587

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K] [L] [M] [N][O] [P] [Q] [R] [S] [T] [U] [V] [W

1IXT1Y][Z]

CH++Builder

complex applications, building with

dynamic libraries, building with
static libraries, building with
C-style strings, joining
calculating
date/time arithmetic
leap vears
text file statistics
calendars
Gregorian
_ Julian
callback functions, pointers

calling superclass virtual functions
capacity, length of strings
case sensitivity, converting strings
case-insensitive strings
comparing
searching
caselnsCharCompareN function
caselnsCharCompareW function
categories of compilers
central moments
characters

__counting
encoding
strings
padding
storing
trimming
Unicode strings, hardcoding
unique, counting
whitespace, formatting
Xerces strings, applying
characters() method
chars, initializing
classes
adding
back_inserter
big_int
ConstrainedValue
exceptions, creating
format
forward declarations
functions

calling superclass virtural
____ creating objects

Page 588

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 589

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 590

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K] [L] [M] [N][O] [P] [Q] [R] [S] [T] [U] [V] [W
1IX][Y][Z]

data structures

databases makefiles, pattern rules from
date duration function

dates

arithmetic, calculating
current, obtaining

day's number within given years, determining
strings, converting

deadlock

debugging applications

dec manipulator
declaring

attributes

elements
__forward class declarations

iterators

maps

member function const

variables, single instances of
declspec(dllexport) attribute
declspec(dllimport) attribute
deconstructors, managing resources

decrement operators, overloading
default-build

defining
constrained value types
macros 2nd

variables, single instances of

delay-loading feature of DLLs
deleting

directories
files

objects from containers
substrings

delimited strings, splitting
dependency relationships, specifyin

deques (double-ended queues)

dequeuelfEquals function
design, generic pad function template
Dev-C++
complex applications, building with
dynamic libraries, building with
static libraries, building with
DFT (Discrete Fourier Transform), computing
diagrams, Venn

I),lgltal Mars Page 591
directories

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 592

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 593

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K] [L] [M] [N][O] [P] [Q] [R] [S] [T] [U] [V] [W
1IX][Y][Z]

EDG (Edison Design Group)

elements
containers

computing number of in

___deleting

declaring

ranges
____partitioning
___ sorting

sequences, transforming in

sum of/mean of, computing in containers
ELF (executable and linking format)
enabling exported templates
encoding characters
endElement() method
enforcing strict conformance
environment variables

PATH, adding directories

setting
erase function

Euclidean distance, computing between vectors
Euclidean Inner Product

evaluate() method
evaluating XPath expressions
exceptions
classes
copying objects

____creating
constructors, making safe
hierarchies
initializers, making safe
member functions, making safe
out of range 2nd
executable and linking format (ELF)
executable library
exporting
symbols from DLLs
templates
expressions
paths

regular, splitting strings with
XPath, evaluating

Extensible Markup Language [See XML |
extensions, files 2nd 3rd

extern keyword

external include guards
. Page 594
extracting

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 595

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 596

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K] [L] [M] [N][O] [P] [Q] [R] [S] [T] [U] [V] [W
1IX][Y][Z]

facets, instantiating
FFT (Fast Fourier Transform), computing
filenames
file extensions, extracting
temporary, creating
files
.Cpp
binary
ELF
variants of

copying
__cygwin.bat
__deleting
directories
____creating
___deleting
reading
extensions

replacing
headers
including only once
searching 2nd 3rd
implementation
information, retrieving
inline, including
_ makefiles 2nd
building with GNU make
__module definition
naming
object
paths, extracting filenames from
renaming
__source, linking
strings, extracting extensions from
targets
__temporary, creating
filtering values
Fixed manipulator
fixed-point numbers, implementing
fixed-size numerical vectors, modifying
flags
formatting
once flag variable
floating-point numbers, comparing bounded accuracy
floating-point output, formatting

format class
formatting

Page 597

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 598

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Index

MEXT B

[SYMBOL][A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W

1IXTIY][Z]

GCC (GNU Compiler Collection) 2nd

DL Ls, building with
__obtaining
generate function

generate_n function
generating

position-independent code
random numbers
generic classes for tabular data

generic message classes

generic pad function template
get_date function

get_time function

get weekday function

get_vyear function
getElementByTagName() method

global locales 2nd

global variables
GNU Complier Collection [See GCC]
GNU make utility 2nd
complex applications, building with
dynamic libraries, building with
Hello World, building with
__obtaining
static libraries, building with
variables
greatest values, searching in containers
Gregorian calendar
groups
projects
threads, adding
guaranteeing unmodified arguments
guards, include

NEXT B

Page 599

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

Page 600

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Index

MEXT B

[SYMBOL][A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W

11IX11Y114]

handling exceptions, initializers
hardcoding Unicode strings
hash functions
hash tables
hashed containers, applying
headers
files 2nd
including only once
Hello World
Boost.Build
building
GNU make utility, building with
hello.cpp
__compiling
hello.exe, linking
hellobeatles application
hex manipulator
hexidecimal integers, formatting as
hidden visibility
hierarchies, exceptions

Please register to remove this banner.

Page 601

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 602

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K] [L] [M] [N][O] [P] [Q] [R] [S] [T] [U] [V] [W
1IX][Y][Z]

IDEs (Integrated Development Environments) 2nd 3rd
C++Builder
CodeWarrior
complex applications, building with
Dev-C++
dynamic libraries, building with
__macros, defining
static libraries, building with
Visual C++
idle-checking functor
imbuing streams
implementation files
implementing
binary trees
constant-sized matricies
dynamically sized matricies

fixed-point numbers
__serialization

stride iterators

implicit rules makefiles
import libraries
importing

namespaces

symbols from DILLs
include guards
increment operators, overloading
indexes, out-of-bounds
information about files, retrieving
infrastructure, manipulators

initializers, making list exception-safe
initalizing
containers with random numbers
member variables

sequences with comma-separated values
shared resources (threads)

inits, initializing

inline files, including

inner_product function

input iterators
msert function

install rule

installing
Boost.Build
complex applications
Cygwin
MinGW

packages

Page 603

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 604

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Index

[SYMBOL][A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W
11IX11Y114]

Jam build system

JobQueue class

join function

joining strings, sequences of
Julian calendar

justifying text 2nd

e prcv NExT

Please register to remove this banner.

Page 605

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Index

[SYMBOL][A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W
11IX11Y114]

keywords, extern

kmatrix template

kstride_iter.hpp

kurtosis of sequences, computing
kvector template

e prcy EXT

Please register to remove this banner.

Page 606

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 607

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K] [L] [M] [N][O] [P] [Q] [R] [S] [T] [U] [V] [W
1IX][Y][Z]

large fixed-width integers
leap years 2nd
least values, searching in containers
left-justifying text 2nd
length
of strings, getting

whitespace, formatting
lexical cast class

lexical cast function

librarians

libraries
Boost Random
Boost serialization
Boost Threads

Boost.Filesystem
dynamic 2nd
dynamically linked runtime

1import

linkers, passing

static [See static libraries]
String Algorithms

targets

XML

libstdc++
lines
countin
text, wrapping
linkers
libraries, passing to
linking
applications
hello.exe
source files
Linux, ELF
lists
doubly linked
objects, storing in
strings, storing

LoadFile() method 2nd
localel .essThan function

locales
behavior
class

global 2nd

naming explicitly
Lrtm'g Page 608
localization

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 609

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 610

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K] [L] [M] [N][O] [P] [Q] [R] [S] [T] [U] [V] [W
1IX][Y][Z]

Mac OS X, symbol visibility for

macros
BOOST ONCE INIT

defining 2nd

predefined
main function

maintenance, makefiles
make utility
GNU 2nd
variables
makefiles 2nd

dependencies

dynamic libraries

Hello World, building with GNU make
implicit rules

maintenance

pattern rules
subordinate

top-level
Unix
Visual C++
management
containers

applying hashed

storing in containers
storing objects in sorted order

resources
__sessions
strings, mapping
vectors
applying instead of arrays
____copying
____optimizing
storing objects in lists
storing pointers in

Maniplnfra class
manipulators

dec
Fixed

__hex
infrastructure
noshowbase

noshowpoint
noshowpos

nouppercase
oct

__scientific

Page 611

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 612

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 613

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K] [L] [M] [N][O] [P] [Q] [R] [S] [T] [U] [V] [W
1IX][Y][Z]

names

collisions, preventing
filenames

creating temporary
extracting file extensions from
files

locales, naming explicitly

matching
namespaces

aliases

code, modularizing
importing

nesting

rules

XML
narrow-character strings, converting Xerces strings
native types, initializing
nesting namespaces
nodes
__searching
sets
nonintrusive serialization

nonmember operator concatenation
norm of vectors, computing
noshowbase manipulator
noshowpoint manipulator

noshowpos manipulator
notification

conditions
threads

noupercase manipulator

nth occurrence of patterns, searching
nth_element function

nthSubstr function
numbers

currency, reading and writing
fixed-point, implementing
floating-point
pi, formatting
random
—__generating
generators
initializing containers
reading
statistics, computing

stride iterators, implementing
. Page 614
strings

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 615

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 616

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K] [L] [M] [N][O] [P] [Q] [R] [S] [T] [U] [V] [W
1IX][Y][Z]

objects

classes, determining subclasses of
containers, deleting

copying
files

functions

____creating
ensuring against modifying

global locale

lists, storing in

money_put

myThread

returning

storing

streams, writing to

thread group

tracking

types, determining at runtime

value

vectors, adding to

XML, saving collections of
obtaining

current date and time

GCC

GNU make utility
oct manipulator

once flag variable
one-definition rule

operators
address-of

arithmetic, overloading
assignment, overloading

binary, overloading
comma

decrement, overloading
__dynamic_cast

increment, overloading

member functions, writing that are not

nonmember concatenation

scope (::)

unary, overloadin
optimizing vectors
options

command-line

compilers

exported templates, enabling

. Page 617

ostream _iterator class template

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 618

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 619

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K] [L] [M] [N][O] [P] [Q] [R] [S] [T] [U] [V] [W
1IX][Y][Z]

packages, installing
pad function
padding strings
parent projects
parsing
strings containing numbers
TinyXML parser
validating parser
Xerces DOM parser
XML documents 2nd
partial _sort function 2nd
partial sort copy function
partitioning ranges
passing
arguments to threads
command-line options
libraries to linkers
PATH environment variables, adding directories
Pathan library
paths
__combining
expressions
files, extracting filenames from

patterns
Abstract Factory design
rules 2nd 3rd

singleton, creating

strings, searching

threads, notifying of conditions
performance [See also optimizing vectors]
performance vectors
pi, formatting
platforms

pluggable transcoding services
pointers

callback functions
class members, applying to

initializing
__storing
polar coordinates
polymorphic types
pop_back function
pop_front function
portability
porting GNU tools to Windows
position independent code, generating Page 620
pragma comment

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 621

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Index

[SYMBOL][A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W
11IX11Y114]

Queue class
queues, double-ended (deques)

e prcy NEXT

Please register to remove this banner.

Page 622

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 623

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K] [L] [M] [N][O] [P] [Q] [R] [S] [T] [U] [V] [W
1IX][Y][Z]

race conditions

RAII (Resource Acquisition Is Initialization) 2nd
rand function

random access, containers

random numbers

containers, initializing
__generating
__generators
random-access iterators

randomly shuffling data
ranges
__comparing
sorting
streams, printing to
values, filtering outside of

ranlib tool
read write_mutexes
reader priority mutex
reading
classes from streams
currency
directories
numbers
text

ready state

rearranging Sequences
recursive make

refinements 2nd

regular expressions, splitting strings with

relationships, classes
release builds

remove function

remove_copy_if function
removeChild() method

renaming files
replacing file extensions

requirements
resizing
__containers

memory buffers
Resource Acquisition Is Initialization (RAII) 2nd

resources

managing
threads

untl.ah.m'ng Page 624
serializing access

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 625

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 626

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K] [L] [M] [N][O] [P] [Q] [R] [S] [T] [U] [V] [W

1IXT1Y][Z]

safety

constructors, making exception-safe
exception-safe assignment and copy construction

initializers, making exception-safe
member functions, making exception-safe

threads, serializing access
sample moments
SaveFile() method

saving objects (XML)

SAX2 ContentHandler
interfaces, implementing
XML, parsing

scheduling locks

schemas, validating XML documents

scientific manipulator

scientific notation, parsing strings

scope operator (::)

scripts, setting environment variables

searching 2nd 3rd

case-insensitive strings
header files 2nd

nodes
values, containers
wildcards

self typedef

Seq
sequences

comma-separated-values, intializing with

containers

elements, transforming
_ kurtosis of, computing

merging
__precedence of

randomly shuffling

rearranging

sizin

strings

joining

____ storing in
serialization

classes

implementing

intrusive

nonintrusive

threads
serialize method

services, pluggable transcoding

Page 627

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 628

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 629

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K] [L] [M] [N][O] [P] [Q] [R] [S] [T] [U] [V] [W
1IX][Y][Z]

TableFormatter class
tables, hash
tabs, converting
tabular data, classes for
targets 2nd
library
templates
BigInt
__classes, writing
__complex
exporting

eneric pad function
istream_iterator class

kmatrix
kvector
lists, storing strings
matrix
member functions, writing
ostream_iterator class
valarray
temporary files, creating
testing strings, validating numbers
text [See also documents]

aligning

autocorrecting
characters, counting
floating-point output, formatting
lines, wrapping
manipulators

margins, adding
reading

spaces, converting
strings, converting case
tabs, converting
whitespace, formatting

words, counting instances of
TextAutoField

textValue() function 2nd
thread group object
threads

access, serializing

adding

conditions, notifying of

__creating
creatin Page 630
resources

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 631

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Index

[SYMBOL][A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W
11IX11Y114]

unary operators, overloading
unary predicates
undefined behavior at runtime
Unicode strings, hardcoding
unique characters, counting
unique identifiers, assigning classes
Unix

bash

environment variables

file extensions

GCC, installin;
GNU make utility, obtaining
makefiles

position-independent code, generating
static libraries

unlocking mutexes
uppercase
manipulators
__strings, converting
usage-requirements
user-defined types, searching maximum elements for
UTC (Coordinated Universal Time)

e prcv NExT

Please register to remove this banner.

Page 632

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Page 633

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K] [L] [M] [N][O] [P] [Q] [R] [S] [T] [U] [V] [W
1IX][Y][Z]

valarray template
validating
numbers
XML documents
DTDs
schemas
Value() method
values
comma-separated, intializing sequences with
constrained types, defining
containers, searching
filtering
numeric types

objects
variables

__automatic
environment

adding directories
setting
global
GNU make utility
instances, insuring one of
member

____copying
initializing
once flag
VPATH

variance, computing
variants

binary files
__remove function

runtime library
vectors
arrays, applying instead of

bounds-checking on
copying
distance between, computing
dynamically sized numerical, modifying
fixed-size numerical, modifying
norm of, computing
objects, storing in lists
__optimizing
pointers, storing in
__strings, storing in
Venn diagrams
versioning, classes Page 634
VIewIng properties

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prcv wExT

Please register to remove this banner.

Page 635

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Index

MEXT B

[SYMBOL][A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W

1IXTIY][Z]

W3C (World Wide Web Consortium)
wait state
whitespace

formatting

strings, trimming characters
wide-character streams
wide-character strings
wildcards
Win32 Application Wizard 2nd
Windows

cmd.cxe

environment variables

file extensions

GCC, installing

GNU make utility, obtaining
__GNU tools, porting to

make utility
words, counting
World Wide Web Consortium (W3C)
wrapping lines in text files
writeNode() method
writer_priority mutex
writing

algorithms

class templates

classes to output streams

currency
member function templates

numbers
operators that are not member functions

stream manipulators

NEXT B

Page 636

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

Page 637

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Index

[SYMBOL][A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W
11IX11Y114]

Xalan library
Xerces
DOM parser
strings, applying
XML (Extensible Markup Language)
libraries
modifyi
namespaces
objects, saving collections of
parsing 2nd
__transforming
validating
DTDs
schemas

__Xerces strings, applying
XPath expressions, evaluating

XPath expressions, evaluating
XSLT stylesheets, transforming XML documents with

e prcy NEXT

Please register to remove this banner.

Page 638

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

e prey NEXT

Index

[SYMBOL][A] [B] [C] [D] [E] [E] [G] [H] [1] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W
11IX11Y114]

years, leap year computations

e prcv wExT

Please register to remove this banner.

Page 639

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Index

1IXTIY][Z]

zones, converting between time zones

Page 640

http://www.processtext.com/abcchm.html

	C++ Cookbook
	Table of Contents
	Copyright
	Preface
	About the Examples
	Conventions Used in This Book
	Using Code Examples
	Comments and Questions
	Safari Enabled
	Acknowledgments

	Chapter 1. Building C++ Applications
	Introduction to Building
	Recipe 1.1. Obtaining and Installing GCC
	Recipe 1.2. Building a Simple
	Recipe 1.3. Building a Static Library from the Command Line
	Recipe 1.4. Building a Dynamic Library from the Command Line
	Recipe 1.5. Building a Complex Application from the Command Line
	Recipe 1.6. Installing Boost.Build
	Recipe 1.7. Building a Simple
	Recipe 1.8. Building a Static Library Using Boost.Build
	Recipe 1.9. Building a Dynamic Library Using Boost.Build
	Recipe 1.10. Building a Complex application Using Boost.Build
	Recipe 1.11. Building a Static Library with an IDE
	Recipe 1.12. Building a Dynamic Library with an IDE
	Recipe 1.13. Building a Complex Application with an IDE
	Recipe 1.14. Obtaining GNU make
	Recipe 1.15. Building A Simple
	Recipe 1.16. Building a Static Library with GNU Make
	Recipe 1.17. Building a Dynamic Library with GNU Make
	Recipe 1.18. Building a Complex Application with GNU make
	Recipe 1.19. Defining a Macro
	Recipe 1.20. Specifying a Command-Line Option from Your IDE
	Recipe 1.21. Producing a Debug Build
	Recipe 1.22. Producing a Release Build
	Recipe 1.23. Specifying a Runtime Library Variant
	Recipe 1.24. Enforcing Strict Conformance to the C++ Standard
	Recipe 1.25. Causing a Source File to Be Linked Automatically Against a Specified Library
	Recipe 1.26. Using Exported Templates

	Chapter 2. Code Organization
	Introduction
	Recipe 2.1. Making Sure a Header File Gets Included Only Once
	Recipe 2.2. Ensuring You Have Only One Instance of a Variable Across Multiple Source Files
	Recipe 2.3. Reducing #includes with Forward Class Declarations
	Recipe 2.4. Preventing Name Collisions with Namespaces
	Recipe 2.5. Including an Inline File

	Chapter 3. Numbers
	Introduction
	Recipe 3.1. Converting a String to a Numeric Type
	Recipe 3.2. Converting Numbers to Strings
	Recipe 3.3. Testing Whether a String Contains a Valid Number
	Recipe 3.4. Comparing Floating-Point Numbers with Bounded Accuracy
	Recipe 3.5. Parsing a String Containing a Number in Scientific Notation
	Recipe 3.6. Converting Between Numeric Types
	Recipe 3.7. Getting the Minimum and Maximum Values for a Numeric Type

	Chapter 4. Strings and Text
	Introduction
	Recipe 4.1. Padding a String
	Recipe 4.2. Trimming a String
	Recipe 4.3. Storing Strings in a Sequence
	Recipe 4.4. Getting the Length of a String
	Recipe 4.5. Reversing a String
	Recipe 4.6. Splitting a String
	Recipe 4.7. Tokenizing a String
	Recipe 4.8. Joining a Sequence of Strings
	Recipe 4.9. Finding Things in Strings
	Recipe 4.10. Finding the nth Instance of a Substring
	Recipe 4.11. Removing a Substring from a String
	Recipe 4.12. Converting a String to Lower- or Uppercase
	Recipe 4.13. Doing a Case-Insensitive String Comparison
	Recipe 4.14. Doing a Case-Insensitive String Search
	Recipe 4.15. Converting Between Tabs and Spaces in a Text File
	Recipe 4.16. Wrapping Lines in a Text File
	Recipe 4.17. Counting the Number of Characters, Words, and Lines in a Text File
	Recipe 4.18. Counting Instances of Each Word in a Text File
	Recipe 4.19. Add Margins to a Text File
	Recipe 4.20. Justify a Text File
	Recipe 4.21. Squeeze Whitespace to Single Spaces in a Text File
	Recipe 4.22. Autocorrect Text as a Buffer Changes
	Recipe 4.23. Reading a Comma-Separated Text File
	Recipe 4.24. Using Regular Expressions to Split a String

	Chapter 5. Dates and Times
	Introduction
	Recipe 5.1. Obtaining the Current Date and Time
	Recipe 5.2. Formatting a Date/Time as a String
	Recipe 5.3. Performing Date and Time Arithmetic
	Recipe 5.4. Converting Between Time Zones
	Recipe 5.5. Determining a Day's Number Within a Given Year
	Recipe 5.6. Defining Constrained Value Types

	Chapter 6. Managing Data with Containers
	Introduction
	Recipe 6.1. Using vectors Instead of Arrays
	Recipe 6.2. Using vectors Efficiently
	Recipe 6.3. Copying a vector
	Recipe 6.4. Storing Pointers in a vector
	Recipe 6.5. Storing Objects in a list
	Recipe 6.6. Mapping strings to Other Things
	Recipe 6.7. Using Hashed Containers
	Recipe 6.8. Storing Objects in Sorted Order
	Recipe 6.9. Storing Containers in Containers

	Chapter 7. Algorithms
	Introduction
	Recipe 7.1. Iterating Through a Container
	Recipe 7.2. Removing Objects from a Container
	Recipe 7.3. Randomly Shuffling Data
	Recipe 7.4. Comparing Ranges
	Recipe 7.5. Merging Data
	Recipe 7.6. Sorting a Range
	Recipe 7.7. Partitioning a Range
	Recipe 7.8. Performing Set Operations on Sequences
	Recipe 7.9. Transforming Elements in a Sequence
	Recipe 7.10. Writing Your Own Algorithm
	Recipe 7.11. Printing a Range to a Stream

	Chapter 8. Classes
	Introduction
	Recipe 8.1. Initializing Class Member Variables
	Recipe 8.2. Using a Function to Create Objects (a.k.a. Factory Pattern)
	Recipe 8.3. Using Constructors and Destructors to Manage Resources (or RAII)
	Recipe 8.4. Automatically Adding New Class Instances to a Container
	Recipe 8.5. Ensuring a Single Copy of a Member Variable
	Recipe 8.6. Determining an Object's Type at Runtime
	Recipe 8.7. Determining if One Object's Class Is a Subclass of Another
	Recipe 8.8. Giving Each Instance of a Class a Unique Identifier
	Recipe 8.9. Creating a Singleton Class
	Recipe 8.10. Creating an Interface with an Abstract Base Class
	Recipe 8.11. Writing a Class Template
	Recipe 8.12. Writing a Member Function Template
	Recipe 8.13. Overloading the Increment and Decrement Operators
	Recipe 8.14. Overloading Arithmetic and Assignment Operators for Intuitive Class Behavior
	Recipe 8.15. Calling a Superclass Virtual Function

	Chapter 9. Exceptions and Safety
	Introduction
	Recipe 9.1. Creating an Exception Class
	Recipe 9.2. Making a Constructor Exception-Safe
	Recipe 9.3. Making an Initializer List Exception-Safe
	Recipe 9.4. Making Member Functions Exception-Safe
	Recipe 9.5. Safely Copying an Object

	Chapter 10. Streams and Files
	Introduction
	Recipe 10.1. Lining Up Text Output
	Recipe 10.2. Formatting Floating-Point Output
	Recipe 10.3. Writing Your Own Stream Manipulators
	Recipe 10.4. Making a Class Writable to a Stream
	Recipe 10.5. Making a Class Readable from a Stream
	Recipe 10.6. Getting Information About a File
	Recipe 10.7. Copying a File
	Recipe 10.8. Deleting or Renaming a File
	Recipe 10.9. Creating a Temporary Filename and File
	Recipe 10.10. Creating a Directory
	Recipe 10.11. Removing a Directory
	Recipe 10.12. Reading the Contents of a Directory
	Recipe 10.13. Extracting a File Extension from a String
	Recipe 10.14. Extracting a Filename from a Full Path
	Recipe 10.15. Extracting a Path from a Full Path and Filename
	Recipe 10.16. Replacing a File Extension
	Recipe 10.17. Combining Two Paths into a Single Path

	Chapter 11. Science and Mathematics
	Introduction
	Recipe 11.1. Computing the Number of Elements in a Container
	Recipe 11.2. Finding the Greatest or Least Value in a Container
	Recipe 11.3. Computing the Sum and Mean of Elements in a Container
	Recipe 11.4. Filtering Values Outside a Given Range
	Recipe 11.5. Computing Variance, Standard Deviation, and Other Statistical Functions
	Recipe 11.6. Generating Random Numbers
	Recipe 11.7. Initializing a Container with Random Numbers
	Recipe 11.8. Representing a Dynamically Sized Numerical Vector
	Recipe 11.9. Representing a Fixed-Size Numerical Vector
	Recipe 11.10. Computing a Dot Product
	Recipe 11.11. Computing the Norm of a Vector
	Recipe 11.12. Computing the Distance Between Two Vectors
	Recipe 11.13. Implementing a Stride Iterator
	Recipe 11.14. Implementing a Dynamically Sized Matrix
	Recipe 11.15. Implementing a Constant-Sized Matrix
	Recipe 11.16. Multiplying Matricies
	Recipe 11.17. Computing the Fast Fourier Transform
	Recipe 11.18. Working with Polar Coordinates
	Recipe 11.19. Performing Arithmetic on Bitsets
	Recipe 11.20. Representing Large Fixed-Width Integers
	Recipe 11.21. Implementing Fixed-Point Numbers

	Chapter 12. Multithreading
	Introduction
	Recipe 12.1. Creating a Thread
	Recipe 12.2. Making a Resource Thread-Safe
	Recipe 12.3. Notifying One Thread from Another
	Recipe 12.4. Initializing Shared Resources Once
	Recipe 12.5. Passing an Argument to a Thread Function

	Chapter 13. Internationalization
	Introduction
	Recipe 13.1. Hardcoding a Unicode String
	Recipe 13.2. Writing and Reading Numbers
	Recipe 13.3. Writing and Reading Dates and Times
	Recipe 13.4. Writing and Reading Currency
	Recipe 13.5. Sorting Localized Strings

	Chapter 14. XML
	Introduction
	Recipe 14.1. Parsing a Simple XML Document
	Recipe 14.2. Working with Xerces Strings
	Recipe 14.3. Parsing a Complex XML Document
	Recipe 14.4. Manipulating an XML Document
	Recipe 14.5. Validating an XML Document with a DTD
	Recipe 14.6. Validating an XML Document with a Schema
	Recipe 14.7. Transforming an XML Document with XSLT
	Recipe 14.8. Evaluating an XPath Expression
	Recipe 14.9. Using XML to Save and Restore a Collection of Objects

	Chapter 15. Miscellaneous
	Introduction
	Recipe 15.1. Using Function Pointers for Callbacks
	Recipe 15.2. Using Pointers to Class Members
	Recipe 15.3. Ensuring That a Function Doesn't Modify an Argument
	Recipe 15.4. Ensuring That a Member Function Doesn't Modify Its Object
	Recipe 15.5. Writing an Operator That Isn't a Member Function
	Recipe 15.6. Initializing a Sequence with Comma-Separated Values

	Colophon
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

